0.3.0: vendor wren vm

This commit is contained in:
underscorediscovery 2020-02-11 20:18:54 -08:00
parent 3c5f087d2c
commit 1ffddc1457
28 changed files with 12616 additions and 0 deletions

488
deps/wren/include/wren.h vendored Normal file
View File

@ -0,0 +1,488 @@
#ifndef wren_h
#define wren_h
#include <stdarg.h>
#include <stdlib.h>
#include <stdbool.h>
// The Wren semantic version number components.
#define WREN_VERSION_MAJOR 0
#define WREN_VERSION_MINOR 3
#define WREN_VERSION_PATCH 0
// A human-friendly string representation of the version.
#define WREN_VERSION_STRING "0.3.0"
// A monotonically increasing numeric representation of the version number. Use
// this if you want to do range checks over versions.
#define WREN_VERSION_NUMBER (WREN_VERSION_MAJOR * 1000000 + \
WREN_VERSION_MINOR * 1000 + \
WREN_VERSION_PATCH)
// A single virtual machine for executing Wren code.
//
// Wren has no global state, so all state stored by a running interpreter lives
// here.
typedef struct WrenVM WrenVM;
// A handle to a Wren object.
//
// This lets code outside of the VM hold a persistent reference to an object.
// After a handle is acquired, and until it is released, this ensures the
// garbage collector will not reclaim the object it references.
typedef struct WrenHandle WrenHandle;
// A generic allocation function that handles all explicit memory management
// used by Wren. It's used like so:
//
// - To allocate new memory, [memory] is NULL and [newSize] is the desired
// size. It should return the allocated memory or NULL on failure.
//
// - To attempt to grow an existing allocation, [memory] is the memory, and
// [newSize] is the desired size. It should return [memory] if it was able to
// grow it in place, or a new pointer if it had to move it.
//
// - To shrink memory, [memory] and [newSize] are the same as above but it will
// always return [memory].
//
// - To free memory, [memory] will be the memory to free and [newSize] will be
// zero. It should return NULL.
typedef void* (*WrenReallocateFn)(void* memory, size_t newSize);
// A function callable from Wren code, but implemented in C.
typedef void (*WrenForeignMethodFn)(WrenVM* vm);
// A finalizer function for freeing resources owned by an instance of a foreign
// class. Unlike most foreign methods, finalizers do not have access to the VM
// and should not interact with it since it's in the middle of a garbage
// collection.
typedef void (*WrenFinalizerFn)(void* data);
// Gives the host a chance to canonicalize the imported module name,
// potentially taking into account the (previously resolved) name of the module
// that contains the import. Typically, this is used to implement relative
// imports.
typedef const char* (*WrenResolveModuleFn)(WrenVM* vm,
const char* importer, const char* name);
// Loads and returns the source code for the module [name].
typedef char* (*WrenLoadModuleFn)(WrenVM* vm, const char* name);
// Returns a pointer to a foreign method on [className] in [module] with
// [signature].
typedef WrenForeignMethodFn (*WrenBindForeignMethodFn)(WrenVM* vm,
const char* module, const char* className, bool isStatic,
const char* signature);
// Displays a string of text to the user.
typedef void (*WrenWriteFn)(WrenVM* vm, const char* text);
typedef enum
{
// A syntax or resolution error detected at compile time.
WREN_ERROR_COMPILE,
// The error message for a runtime error.
WREN_ERROR_RUNTIME,
// One entry of a runtime error's stack trace.
WREN_ERROR_STACK_TRACE
} WrenErrorType;
// Reports an error to the user.
//
// An error detected during compile time is reported by calling this once with
// [type] `WREN_ERROR_COMPILE`, the resolved name of the [module] and [line]
// where the error occurs, and the compiler's error [message].
//
// A runtime error is reported by calling this once with [type]
// `WREN_ERROR_RUNTIME`, no [module] or [line], and the runtime error's
// [message]. After that, a series of [type] `WREN_ERROR_STACK_TRACE` calls are
// made for each line in the stack trace. Each of those has the resolved
// [module] and [line] where the method or function is defined and [message] is
// the name of the method or function.
typedef void (*WrenErrorFn)(
WrenVM* vm, WrenErrorType type, const char* module, int line,
const char* message);
typedef struct
{
// The callback invoked when the foreign object is created.
//
// This must be provided. Inside the body of this, it must call
// [wrenSetSlotNewForeign()] exactly once.
WrenForeignMethodFn allocate;
// The callback invoked when the garbage collector is about to collect a
// foreign object's memory.
//
// This may be `NULL` if the foreign class does not need to finalize.
WrenFinalizerFn finalize;
} WrenForeignClassMethods;
// Returns a pair of pointers to the foreign methods used to allocate and
// finalize the data for instances of [className] in resolved [module].
typedef WrenForeignClassMethods (*WrenBindForeignClassFn)(
WrenVM* vm, const char* module, const char* className);
typedef struct
{
// The callback Wren will use to allocate, reallocate, and deallocate memory.
//
// If `NULL`, defaults to a built-in function that uses `realloc` and `free`.
WrenReallocateFn reallocateFn;
// The callback Wren uses to resolve a module name.
//
// Some host applications may wish to support "relative" imports, where the
// meaning of an import string depends on the module that contains it. To
// support that without baking any policy into Wren itself, the VM gives the
// host a chance to resolve an import string.
//
// Before an import is loaded, it calls this, passing in the name of the
// module that contains the import and the import string. The host app can
// look at both of those and produce a new "canonical" string that uniquely
// identifies the module. This string is then used as the name of the module
// going forward. It is what is passed to [loadModuleFn], how duplicate
// imports of the same module are detected, and how the module is reported in
// stack traces.
//
// If you leave this function NULL, then the original import string is
// treated as the resolved string.
//
// If an import cannot be resolved by the embedder, it should return NULL and
// Wren will report that as a runtime error.
//
// Wren will take ownership of the string you return and free it for you, so
// it should be allocated using the same allocation function you provide
// above.
WrenResolveModuleFn resolveModuleFn;
// The callback Wren uses to load a module.
//
// Since Wren does not talk directly to the file system, it relies on the
// embedder to physically locate and read the source code for a module. The
// first time an import appears, Wren will call this and pass in the name of
// the module being imported. The VM should return the soure code for that
// module. Memory for the source should be allocated using [reallocateFn] and
// Wren will take ownership over it.
//
// This will only be called once for any given module name. Wren caches the
// result internally so subsequent imports of the same module will use the
// previous source and not call this.
//
// If a module with the given name could not be found by the embedder, it
// should return NULL and Wren will report that as a runtime error.
WrenLoadModuleFn loadModuleFn;
// The callback Wren uses to find a foreign method and bind it to a class.
//
// When a foreign method is declared in a class, this will be called with the
// foreign method's module, class, and signature when the class body is
// executed. It should return a pointer to the foreign function that will be
// bound to that method.
//
// If the foreign function could not be found, this should return NULL and
// Wren will report it as runtime error.
WrenBindForeignMethodFn bindForeignMethodFn;
// The callback Wren uses to find a foreign class and get its foreign methods.
//
// When a foreign class is declared, this will be called with the class's
// module and name when the class body is executed. It should return the
// foreign functions uses to allocate and (optionally) finalize the bytes
// stored in the foreign object when an instance is created.
WrenBindForeignClassFn bindForeignClassFn;
// The callback Wren uses to display text when `System.print()` or the other
// related functions are called.
//
// If this is `NULL`, Wren discards any printed text.
WrenWriteFn writeFn;
// The callback Wren uses to report errors.
//
// When an error occurs, this will be called with the module name, line
// number, and an error message. If this is `NULL`, Wren doesn't report any
// errors.
WrenErrorFn errorFn;
// The number of bytes Wren will allocate before triggering the first garbage
// collection.
//
// If zero, defaults to 10MB.
size_t initialHeapSize;
// After a collection occurs, the threshold for the next collection is
// determined based on the number of bytes remaining in use. This allows Wren
// to shrink its memory usage automatically after reclaiming a large amount
// of memory.
//
// This can be used to ensure that the heap does not get too small, which can
// in turn lead to a large number of collections afterwards as the heap grows
// back to a usable size.
//
// If zero, defaults to 1MB.
size_t minHeapSize;
// Wren will resize the heap automatically as the number of bytes
// remaining in use after a collection changes. This number determines the
// amount of additional memory Wren will use after a collection, as a
// percentage of the current heap size.
//
// For example, say that this is 50. After a garbage collection, when there
// are 400 bytes of memory still in use, the next collection will be triggered
// after a total of 600 bytes are allocated (including the 400 already in
// use.)
//
// Setting this to a smaller number wastes less memory, but triggers more
// frequent garbage collections.
//
// If zero, defaults to 50.
int heapGrowthPercent;
// User-defined data associated with the VM.
void* userData;
} WrenConfiguration;
typedef enum
{
WREN_RESULT_SUCCESS,
WREN_RESULT_COMPILE_ERROR,
WREN_RESULT_RUNTIME_ERROR
} WrenInterpretResult;
// The type of an object stored in a slot.
//
// This is not necessarily the object's *class*, but instead its low level
// representation type.
typedef enum
{
WREN_TYPE_BOOL,
WREN_TYPE_NUM,
WREN_TYPE_FOREIGN,
WREN_TYPE_LIST,
WREN_TYPE_NULL,
WREN_TYPE_STRING,
// The object is of a type that isn't accessible by the C API.
WREN_TYPE_UNKNOWN
} WrenType;
// Initializes [configuration] with all of its default values.
//
// Call this before setting the particular fields you care about.
void wrenInitConfiguration(WrenConfiguration* configuration);
// Creates a new Wren virtual machine using the given [configuration]. Wren
// will copy the configuration data, so the argument passed to this can be
// freed after calling this. If [configuration] is `NULL`, uses a default
// configuration.
WrenVM* wrenNewVM(WrenConfiguration* configuration);
// Disposes of all resources is use by [vm], which was previously created by a
// call to [wrenNewVM].
void wrenFreeVM(WrenVM* vm);
// Immediately run the garbage collector to free unused memory.
void wrenCollectGarbage(WrenVM* vm);
// Runs [source], a string of Wren source code in a new fiber in [vm] in the
// context of resolved [module].
WrenInterpretResult wrenInterpret(WrenVM* vm, const char* module,
const char* source);
// Creates a handle that can be used to invoke a method with [signature] on
// using a receiver and arguments that are set up on the stack.
//
// This handle can be used repeatedly to directly invoke that method from C
// code using [wrenCall].
//
// When you are done with this handle, it must be released using
// [wrenReleaseHandle].
WrenHandle* wrenMakeCallHandle(WrenVM* vm, const char* signature);
// Calls [method], using the receiver and arguments previously set up on the
// stack.
//
// [method] must have been created by a call to [wrenMakeCallHandle]. The
// arguments to the method must be already on the stack. The receiver should be
// in slot 0 with the remaining arguments following it, in order. It is an
// error if the number of arguments provided does not match the method's
// signature.
//
// After this returns, you can access the return value from slot 0 on the stack.
WrenInterpretResult wrenCall(WrenVM* vm, WrenHandle* method);
// Releases the reference stored in [handle]. After calling this, [handle] can
// no longer be used.
void wrenReleaseHandle(WrenVM* vm, WrenHandle* handle);
// The following functions are intended to be called from foreign methods or
// finalizers. The interface Wren provides to a foreign method is like a
// register machine: you are given a numbered array of slots that values can be
// read from and written to. Values always live in a slot (unless explicitly
// captured using wrenGetSlotHandle(), which ensures the garbage collector can
// find them.
//
// When your foreign function is called, you are given one slot for the receiver
// and each argument to the method. The receiver is in slot 0 and the arguments
// are in increasingly numbered slots after that. You are free to read and
// write to those slots as you want. If you want more slots to use as scratch
// space, you can call wrenEnsureSlots() to add more.
//
// When your function returns, every slot except slot zero is discarded and the
// value in slot zero is used as the return value of the method. If you don't
// store a return value in that slot yourself, it will retain its previous
// value, the receiver.
//
// While Wren is dynamically typed, C is not. This means the C interface has to
// support the various types of primitive values a Wren variable can hold: bool,
// double, string, etc. If we supported this for every operation in the C API,
// there would be a combinatorial explosion of functions, like "get a
// double-valued element from a list", "insert a string key and double value
// into a map", etc.
//
// To avoid that, the only way to convert to and from a raw C value is by going
// into and out of a slot. All other functions work with values already in a
// slot. So, to add an element to a list, you put the list in one slot, and the
// element in another. Then there is a single API function wrenInsertInList()
// that takes the element out of that slot and puts it into the list.
//
// The goal of this API is to be easy to use while not compromising performance.
// The latter means it does not do type or bounds checking at runtime except
// using assertions which are generally removed from release builds. C is an
// unsafe language, so it's up to you to be careful to use it correctly. In
// return, you get a very fast FFI.
// Returns the number of slots available to the current foreign method.
int wrenGetSlotCount(WrenVM* vm);
// Ensures that the foreign method stack has at least [numSlots] available for
// use, growing the stack if needed.
//
// Does not shrink the stack if it has more than enough slots.
//
// It is an error to call this from a finalizer.
void wrenEnsureSlots(WrenVM* vm, int numSlots);
// Gets the type of the object in [slot].
WrenType wrenGetSlotType(WrenVM* vm, int slot);
// Reads a boolean value from [slot].
//
// It is an error to call this if the slot does not contain a boolean value.
bool wrenGetSlotBool(WrenVM* vm, int slot);
// Reads a byte array from [slot].
//
// The memory for the returned string is owned by Wren. You can inspect it
// while in your foreign method, but cannot keep a pointer to it after the
// function returns, since the garbage collector may reclaim it.
//
// Returns a pointer to the first byte of the array and fill [length] with the
// number of bytes in the array.
//
// It is an error to call this if the slot does not contain a string.
const char* wrenGetSlotBytes(WrenVM* vm, int slot, int* length);
// Reads a number from [slot].
//
// It is an error to call this if the slot does not contain a number.
double wrenGetSlotDouble(WrenVM* vm, int slot);
// Reads a foreign object from [slot] and returns a pointer to the foreign data
// stored with it.
//
// It is an error to call this if the slot does not contain an instance of a
// foreign class.
void* wrenGetSlotForeign(WrenVM* vm, int slot);
// Reads a string from [slot].
//
// The memory for the returned string is owned by Wren. You can inspect it
// while in your foreign method, but cannot keep a pointer to it after the
// function returns, since the garbage collector may reclaim it.
//
// It is an error to call this if the slot does not contain a string.
const char* wrenGetSlotString(WrenVM* vm, int slot);
// Creates a handle for the value stored in [slot].
//
// This will prevent the object that is referred to from being garbage collected
// until the handle is released by calling [wrenReleaseHandle()].
WrenHandle* wrenGetSlotHandle(WrenVM* vm, int slot);
// Stores the boolean [value] in [slot].
void wrenSetSlotBool(WrenVM* vm, int slot, bool value);
// Stores the array [length] of [bytes] in [slot].
//
// The bytes are copied to a new string within Wren's heap, so you can free
// memory used by them after this is called.
void wrenSetSlotBytes(WrenVM* vm, int slot, const char* bytes, size_t length);
// Stores the numeric [value] in [slot].
void wrenSetSlotDouble(WrenVM* vm, int slot, double value);
// Creates a new instance of the foreign class stored in [classSlot] with [size]
// bytes of raw storage and places the resulting object in [slot].
//
// This does not invoke the foreign class's constructor on the new instance. If
// you need that to happen, call the constructor from Wren, which will then
// call the allocator foreign method. In there, call this to create the object
// and then the constructor will be invoked when the allocator returns.
//
// Returns a pointer to the foreign object's data.
void* wrenSetSlotNewForeign(WrenVM* vm, int slot, int classSlot, size_t size);
// Stores a new empty list in [slot].
void wrenSetSlotNewList(WrenVM* vm, int slot);
// Stores null in [slot].
void wrenSetSlotNull(WrenVM* vm, int slot);
// Stores the string [text] in [slot].
//
// The [text] is copied to a new string within Wren's heap, so you can free
// memory used by it after this is called. The length is calculated using
// [strlen()]. If the string may contain any null bytes in the middle, then you
// should use [wrenSetSlotBytes()] instead.
void wrenSetSlotString(WrenVM* vm, int slot, const char* text);
// Stores the value captured in [handle] in [slot].
//
// This does not release the handle for the value.
void wrenSetSlotHandle(WrenVM* vm, int slot, WrenHandle* handle);
// Returns the number of elements in the list stored in [slot].
int wrenGetListCount(WrenVM* vm, int slot);
// Reads element [index] from the list in [listSlot] and stores it in
// [elementSlot].
void wrenGetListElement(WrenVM* vm, int listSlot, int index, int elementSlot);
// Takes the value stored at [elementSlot] and inserts it into the list stored
// at [listSlot] at [index].
//
// As in Wren, negative indexes can be used to insert from the end. To append
// an element, use `-1` for the index.
void wrenInsertInList(WrenVM* vm, int listSlot, int index, int elementSlot);
// Looks up the top level variable with [name] in resolved [module] and stores
// it in [slot].
void wrenGetVariable(WrenVM* vm, const char* module, const char* name,
int slot);
// Sets the current fiber to be aborted, and uses the value in [slot] as the
// runtime error object.
void wrenAbortFiber(WrenVM* vm, int slot);
// Returns the user data associated with the WrenVM.
void* wrenGetUserData(WrenVM* vm);
// Sets user data associated with the WrenVM.
void wrenSetUserData(WrenVM* vm, void* userData);
#endif

11
deps/wren/include/wren.hpp vendored Normal file
View File

@ -0,0 +1,11 @@
#ifndef wren_hpp
#define wren_hpp
// This is a convenience header for users that want to compile Wren as C and
// link to it from a C++ application.
extern "C" {
#include "wren.h"
}
#endif

96
deps/wren/src/optional/wren_opt_meta.c vendored Normal file
View File

@ -0,0 +1,96 @@
#include "wren_opt_meta.h"
#if WREN_OPT_META
#include <string.h>
#include "wren_vm.h"
#include "wren_opt_meta.wren.inc"
void metaCompile(WrenVM* vm)
{
const char* source = wrenGetSlotString(vm, 1);
bool isExpression = wrenGetSlotBool(vm, 2);
bool printErrors = wrenGetSlotBool(vm, 3);
// TODO: Allow passing in module?
// Look up the module surrounding the callsite. This is brittle. The -2 walks
// up the callstack assuming that the meta module has one level of
// indirection before hitting the user's code. Any change to meta may require
// this constant to be tweaked.
ObjFiber* currentFiber = vm->fiber;
ObjFn* fn = currentFiber->frames[currentFiber->numFrames - 2].closure->fn;
ObjString* module = fn->module->name;
ObjClosure* closure = wrenCompileSource(vm, module->value, source,
isExpression, printErrors);
// Return the result. We can't use the public API for this since we have a
// bare ObjClosure*.
if (closure == NULL)
{
vm->apiStack[0] = NULL_VAL;
}
else
{
vm->apiStack[0] = OBJ_VAL(closure);
}
}
void metaGetModuleVariables(WrenVM* vm)
{
wrenEnsureSlots(vm, 3);
Value moduleValue = wrenMapGet(vm->modules, vm->apiStack[1]);
if (IS_UNDEFINED(moduleValue))
{
vm->apiStack[0] = NULL_VAL;
return;
}
ObjModule* module = AS_MODULE(moduleValue);
ObjList* names = wrenNewList(vm, module->variableNames.count);
vm->apiStack[0] = OBJ_VAL(names);
// Initialize the elements to null in case a collection happens when we
// allocate the strings below.
for (int i = 0; i < names->elements.count; i++)
{
names->elements.data[i] = NULL_VAL;
}
for (int i = 0; i < names->elements.count; i++)
{
names->elements.data[i] = OBJ_VAL(module->variableNames.data[i]);
}
}
const char* wrenMetaSource()
{
return metaModuleSource;
}
WrenForeignMethodFn wrenMetaBindForeignMethod(WrenVM* vm,
const char* className,
bool isStatic,
const char* signature)
{
// There is only one foreign method in the meta module.
ASSERT(strcmp(className, "Meta") == 0, "Should be in Meta class.");
ASSERT(isStatic, "Should be static.");
if (strcmp(signature, "compile_(_,_,_)") == 0)
{
return metaCompile;
}
if (strcmp(signature, "getModuleVariables_(_)") == 0)
{
return metaGetModuleVariables;
}
ASSERT(false, "Unknown method.");
return NULL;
}
#endif

18
deps/wren/src/optional/wren_opt_meta.h vendored Normal file
View File

@ -0,0 +1,18 @@
#ifndef wren_opt_meta_h
#define wren_opt_meta_h
#include "wren_common.h"
#include "wren.h"
// This module defines the Meta class and its associated methods.
#if WREN_OPT_META
const char* wrenMetaSource();
WrenForeignMethodFn wrenMetaBindForeignMethod(WrenVM* vm,
const char* className,
bool isStatic,
const char* signature);
#endif
#endif

View File

@ -0,0 +1,32 @@
class Meta {
static getModuleVariables(module) {
if (!(module is String)) Fiber.abort("Module name must be a string.")
var result = getModuleVariables_(module)
if (result != null) return result
Fiber.abort("Could not find a module named '%(module)'.")
}
static eval(source) {
if (!(source is String)) Fiber.abort("Source code must be a string.")
var closure = compile_(source, false, false)
// TODO: Include compile errors.
if (closure == null) Fiber.abort("Could not compile source code.")
closure.call()
}
static compileExpression(source) {
if (!(source is String)) Fiber.abort("Source code must be a string.")
return compile_(source, true, true)
}
static compile(source) {
if (!(source is String)) Fiber.abort("Source code must be a string.")
return compile_(source, false, true)
}
foreign static compile_(source, isExpression, printErrors)
foreign static getModuleVariables_(module)
}

View File

@ -0,0 +1,34 @@
// Generated automatically from src/optional/wren_opt_meta.wren. Do not edit.
static const char* metaModuleSource =
"class Meta {\n"
" static getModuleVariables(module) {\n"
" if (!(module is String)) Fiber.abort(\"Module name must be a string.\")\n"
" var result = getModuleVariables_(module)\n"
" if (result != null) return result\n"
"\n"
" Fiber.abort(\"Could not find a module named '%(module)'.\")\n"
" }\n"
"\n"
" static eval(source) {\n"
" if (!(source is String)) Fiber.abort(\"Source code must be a string.\")\n"
"\n"
" var closure = compile_(source, false, false)\n"
" // TODO: Include compile errors.\n"
" if (closure == null) Fiber.abort(\"Could not compile source code.\")\n"
"\n"
" closure.call()\n"
" }\n"
"\n"
" static compileExpression(source) {\n"
" if (!(source is String)) Fiber.abort(\"Source code must be a string.\")\n"
" return compile_(source, true, true)\n"
" }\n"
"\n"
" static compile(source) {\n"
" if (!(source is String)) Fiber.abort(\"Source code must be a string.\")\n"
" return compile_(source, false, true)\n"
" }\n"
"\n"
" foreign static compile_(source, isExpression, printErrors)\n"
" foreign static getModuleVariables_(module)\n"
"}\n";

144
deps/wren/src/optional/wren_opt_random.c vendored Normal file
View File

@ -0,0 +1,144 @@
#include "wren_opt_random.h"
#if WREN_OPT_RANDOM
#include <string.h>
#include <time.h>
#include "wren.h"
#include "wren_vm.h"
#include "wren_opt_random.wren.inc"
// Implements the well equidistributed long-period linear PRNG (WELL512a).
//
// https://en.wikipedia.org/wiki/Well_equidistributed_long-period_linear
typedef struct
{
uint32_t state[16];
uint32_t index;
} Well512;
// Code from: http://www.lomont.org/Math/Papers/2008/Lomont_PRNG_2008.pdf
static uint32_t advanceState(Well512* well)
{
uint32_t a, b, c, d;
a = well->state[well->index];
c = well->state[(well->index + 13) & 15];
b = a ^ c ^ (a << 16) ^ (c << 15);
c = well->state[(well->index + 9) & 15];
c ^= (c >> 11);
a = well->state[well->index] = b ^ c;
d = a ^ ((a << 5) & 0xda442d24U);
well->index = (well->index + 15) & 15;
a = well->state[well->index];
well->state[well->index] = a ^ b ^ d ^ (a << 2) ^ (b << 18) ^ (c << 28);
return well->state[well->index];
}
static void randomAllocate(WrenVM* vm)
{
Well512* well = (Well512*)wrenSetSlotNewForeign(vm, 0, 0, sizeof(Well512));
well->index = 0;
}
static void randomSeed0(WrenVM* vm)
{
Well512* well = (Well512*)wrenGetSlotForeign(vm, 0);
srand((uint32_t)time(NULL));
for (int i = 0; i < 16; i++)
{
well->state[i] = rand();
}
}
static void randomSeed1(WrenVM* vm)
{
Well512* well = (Well512*)wrenGetSlotForeign(vm, 0);
srand((uint32_t)wrenGetSlotDouble(vm, 1));
for (int i = 0; i < 16; i++)
{
well->state[i] = rand();
}
}
static void randomSeed16(WrenVM* vm)
{
Well512* well = (Well512*)wrenGetSlotForeign(vm, 0);
for (int i = 0; i < 16; i++)
{
well->state[i] = (uint32_t)wrenGetSlotDouble(vm, i + 1);
}
}
static void randomFloat(WrenVM* vm)
{
Well512* well = (Well512*)wrenGetSlotForeign(vm, 0);
// A double has 53 bits of precision in its mantissa, and we'd like to take
// full advantage of that, so we need 53 bits of random source data.
// First, start with 32 random bits, shifted to the left 21 bits.
double result = (double)advanceState(well) * (1 << 21);
// Then add another 21 random bits.
result += (double)(advanceState(well) & ((1 << 21) - 1));
// Now we have a number from 0 - (2^53). Divide be the range to get a double
// from 0 to 1.0 (half-inclusive).
result /= 9007199254740992.0;
wrenSetSlotDouble(vm, 0, result);
}
static void randomInt0(WrenVM* vm)
{
Well512* well = (Well512*)wrenGetSlotForeign(vm, 0);
wrenSetSlotDouble(vm, 0, (double)advanceState(well));
}
const char* wrenRandomSource()
{
return randomModuleSource;
}
WrenForeignClassMethods wrenRandomBindForeignClass(WrenVM* vm,
const char* module,
const char* className)
{
ASSERT(strcmp(className, "Random") == 0, "Should be in Random class.");
WrenForeignClassMethods methods;
methods.allocate = randomAllocate;
methods.finalize = NULL;
return methods;
}
WrenForeignMethodFn wrenRandomBindForeignMethod(WrenVM* vm,
const char* className,
bool isStatic,
const char* signature)
{
ASSERT(strcmp(className, "Random") == 0, "Should be in Random class.");
if (strcmp(signature, "<allocate>") == 0) return randomAllocate;
if (strcmp(signature, "seed_()") == 0) return randomSeed0;
if (strcmp(signature, "seed_(_)") == 0) return randomSeed1;
if (strcmp(signature, "seed_(_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_)") == 0)
{
return randomSeed16;
}
if (strcmp(signature, "float()") == 0) return randomFloat;
if (strcmp(signature, "int()") == 0) return randomInt0;
ASSERT(false, "Unknown method.");
return NULL;
}
#endif

View File

@ -0,0 +1,20 @@
#ifndef wren_opt_random_h
#define wren_opt_random_h
#include "wren_common.h"
#include "wren.h"
#if WREN_OPT_RANDOM
const char* wrenRandomSource();
WrenForeignClassMethods wrenRandomBindForeignClass(WrenVM* vm,
const char* module,
const char* className);
WrenForeignMethodFn wrenRandomBindForeignMethod(WrenVM* vm,
const char* className,
bool isStatic,
const char* signature);
#endif
#endif

View File

@ -0,0 +1,122 @@
foreign class Random {
construct new() {
seed_()
}
construct new(seed) {
if (seed is Num) {
seed_(seed)
} else if (seed is Sequence) {
if (seed.isEmpty) Fiber.abort("Sequence cannot be empty.")
// TODO: Empty sequence.
var seeds = []
for (element in seed) {
if (!(element is Num)) Fiber.abort("Sequence elements must all be numbers.")
seeds.add(element)
if (seeds.count == 16) break
}
// Cycle the values to fill in any missing slots.
var i = 0
while (seeds.count < 16) {
seeds.add(seeds[i])
i = i + 1
}
seed_(
seeds[0], seeds[1], seeds[2], seeds[3],
seeds[4], seeds[5], seeds[6], seeds[7],
seeds[8], seeds[9], seeds[10], seeds[11],
seeds[12], seeds[13], seeds[14], seeds[15])
} else {
Fiber.abort("Seed must be a number or a sequence of numbers.")
}
}
foreign seed_()
foreign seed_(seed)
foreign seed_(n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14, n15, n16)
foreign float()
float(end) { float() * end }
float(start, end) { float() * (end - start) + start }
foreign int()
int(end) { (float() * end).floor }
int(start, end) { (float() * (end - start)).floor + start }
sample(list) { sample(list, 1)[0] }
sample(list, count) {
if (count > list.count) Fiber.abort("Not enough elements to sample.")
// There are (at least) two simple algorithms for choosing a number of
// samples from a list without replacement -- where we don't pick the same
// element more than once.
//
// The first is faster when the number of samples is small relative to the
// size of the collection. In many cases, it avoids scanning the entire
// list. In the common case of just wanting one sample, it's a single
// random index lookup.
//
// However, its performance degrades badly as the sample size increases.
// Vitter's algorithm always scans the entire list, but it's also always
// O(n).
//
// The cutoff point between the two follows a quadratic curve on the same
// size. Based on some empirical testing, scaling that by 5 seems to fit
// pretty closely and chooses the fastest one for the given sample and
// collection size.
if (count * count * 5 < list.count) {
// Pick random elements and retry if you hit a previously chosen one.
var picked = {}
var result = []
for (i in 0...count) {
// Find an index that we haven't already selected.
var index
while (true) {
index = int(list.count)
if (!picked.containsKey(index)) break
}
picked[index] = true
result.add(list[index])
}
return result
} else {
// Jeffrey Vitter's Algorithm R.
// Fill the reservoir with the first elements in the list.
var result = list[0...count]
// We want to ensure the results are always in random order, so shuffle
// them. In cases where the sample size is the entire collection, this
// devolves to running Fisher-Yates on a copy of the list.
shuffle(result)
// Now walk the rest of the list. For each element, randomly consider
// replacing one of the reservoir elements with it. The probability here
// works out such that it does this uniformly.
for (i in count...list.count) {
var slot = int(0, i + 1)
if (slot < count) result[slot] = list[i]
}
return result
}
}
shuffle(list) {
if (list.isEmpty) return
// Fisher-Yates shuffle.
for (i in 0...list.count - 1) {
var from = int(i, list.count)
var temp = list[from]
list[from] = list[i]
list[i] = temp
}
}
}

View File

@ -0,0 +1,124 @@
// Generated automatically from src/optional/wren_opt_random.wren. Do not edit.
static const char* randomModuleSource =
"foreign class Random {\n"
" construct new() {\n"
" seed_()\n"
" }\n"
"\n"
" construct new(seed) {\n"
" if (seed is Num) {\n"
" seed_(seed)\n"
" } else if (seed is Sequence) {\n"
" if (seed.isEmpty) Fiber.abort(\"Sequence cannot be empty.\")\n"
"\n"
" // TODO: Empty sequence.\n"
" var seeds = []\n"
" for (element in seed) {\n"
" if (!(element is Num)) Fiber.abort(\"Sequence elements must all be numbers.\")\n"
"\n"
" seeds.add(element)\n"
" if (seeds.count == 16) break\n"
" }\n"
"\n"
" // Cycle the values to fill in any missing slots.\n"
" var i = 0\n"
" while (seeds.count < 16) {\n"
" seeds.add(seeds[i])\n"
" i = i + 1\n"
" }\n"
"\n"
" seed_(\n"
" seeds[0], seeds[1], seeds[2], seeds[3],\n"
" seeds[4], seeds[5], seeds[6], seeds[7],\n"
" seeds[8], seeds[9], seeds[10], seeds[11],\n"
" seeds[12], seeds[13], seeds[14], seeds[15])\n"
" } else {\n"
" Fiber.abort(\"Seed must be a number or a sequence of numbers.\")\n"
" }\n"
" }\n"
"\n"
" foreign seed_()\n"
" foreign seed_(seed)\n"
" foreign seed_(n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14, n15, n16)\n"
"\n"
" foreign float()\n"
" float(end) { float() * end }\n"
" float(start, end) { float() * (end - start) + start }\n"
"\n"
" foreign int()\n"
" int(end) { (float() * end).floor }\n"
" int(start, end) { (float() * (end - start)).floor + start }\n"
"\n"
" sample(list) { sample(list, 1)[0] }\n"
" sample(list, count) {\n"
" if (count > list.count) Fiber.abort(\"Not enough elements to sample.\")\n"
"\n"
" // There are (at least) two simple algorithms for choosing a number of\n"
" // samples from a list without replacement -- where we don't pick the same\n"
" // element more than once.\n"
" //\n"
" // The first is faster when the number of samples is small relative to the\n"
" // size of the collection. In many cases, it avoids scanning the entire\n"
" // list. In the common case of just wanting one sample, it's a single\n"
" // random index lookup.\n"
" //\n"
" // However, its performance degrades badly as the sample size increases.\n"
" // Vitter's algorithm always scans the entire list, but it's also always\n"
" // O(n).\n"
" //\n"
" // The cutoff point between the two follows a quadratic curve on the same\n"
" // size. Based on some empirical testing, scaling that by 5 seems to fit\n"
" // pretty closely and chooses the fastest one for the given sample and\n"
" // collection size.\n"
" if (count * count * 5 < list.count) {\n"
" // Pick random elements and retry if you hit a previously chosen one.\n"
" var picked = {}\n"
" var result = []\n"
" for (i in 0...count) {\n"
" // Find an index that we haven't already selected.\n"
" var index\n"
" while (true) {\n"
" index = int(list.count)\n"
" if (!picked.containsKey(index)) break\n"
" }\n"
"\n"
" picked[index] = true\n"
" result.add(list[index])\n"
" }\n"
"\n"
" return result\n"
" } else {\n"
" // Jeffrey Vitter's Algorithm R.\n"
"\n"
" // Fill the reservoir with the first elements in the list.\n"
" var result = list[0...count]\n"
"\n"
" // We want to ensure the results are always in random order, so shuffle\n"
" // them. In cases where the sample size is the entire collection, this\n"
" // devolves to running Fisher-Yates on a copy of the list.\n"
" shuffle(result)\n"
"\n"
" // Now walk the rest of the list. For each element, randomly consider\n"
" // replacing one of the reservoir elements with it. The probability here\n"
" // works out such that it does this uniformly.\n"
" for (i in count...list.count) {\n"
" var slot = int(0, i + 1)\n"
" if (slot < count) result[slot] = list[i]\n"
" }\n"
"\n"
" return result\n"
" }\n"
" }\n"
"\n"
" shuffle(list) {\n"
" if (list.isEmpty) return\n"
"\n"
" // Fisher-Yates shuffle.\n"
" for (i in 0...list.count - 1) {\n"
" var from = int(i, list.count)\n"
" var temp = list[from]\n"
" list[from] = list[i]\n"
" list[i] = temp\n"
" }\n"
" }\n"
"}\n";

202
deps/wren/src/vm/wren_common.h vendored Normal file
View File

@ -0,0 +1,202 @@
#ifndef wren_common_h
#define wren_common_h
// This header contains macros and defines used across the entire Wren
// implementation. In particular, it contains "configuration" defines that
// control how Wren works. Some of these are only used while hacking on Wren
// itself.
//
// This header is *not* intended to be included by code outside of Wren itself.
// Wren pervasively uses the C99 integer types (uint16_t, etc.) along with some
// of the associated limit constants (UINT32_MAX, etc.). The constants are not
// part of standard C++, so aren't included by default by C++ compilers when you
// include <stdint> unless __STDC_LIMIT_MACROS is defined.
#define __STDC_LIMIT_MACROS
#include <stdint.h>
// These flags let you control some details of the interpreter's implementation.
// Usually they trade-off a bit of portability for speed. They default to the
// most efficient behavior.
// If true, then Wren uses a NaN-tagged double for its core value
// representation. Otherwise, it uses a larger more conventional struct. The
// former is significantly faster and more compact. The latter is useful for
// debugging and may be more portable.
//
// Defaults to on.
#ifndef WREN_NAN_TAGGING
#define WREN_NAN_TAGGING 1
#endif
// If true, the VM's interpreter loop uses computed gotos. See this for more:
// http://gcc.gnu.org/onlinedocs/gcc-3.1.1/gcc/Labels-as-Values.html
// Enabling this speeds up the main dispatch loop a bit, but requires compiler
// support.
//
// Defaults to true on supported compilers.
#ifndef WREN_COMPUTED_GOTO
#ifdef _MSC_VER
// No computed gotos in Visual Studio.
#define WREN_COMPUTED_GOTO 0
#else
#define WREN_COMPUTED_GOTO 1
#endif
#endif
// The VM includes a number of optional modules. You can choose to include
// these or not. By default, they are all available. To disable one, set the
// corresponding `WREN_OPT_<name>` define to `0`.
#ifndef WREN_OPT_META
#define WREN_OPT_META 1
#endif
#ifndef WREN_OPT_RANDOM
#define WREN_OPT_RANDOM 1
#endif
// These flags are useful for debugging and hacking on Wren itself. They are not
// intended to be used for production code. They default to off.
// Set this to true to stress test the GC. It will perform a collection before
// every allocation. This is useful to ensure that memory is always correctly
// reachable.
#define WREN_DEBUG_GC_STRESS 0
// Set this to true to log memory operations as they occur.
#define WREN_DEBUG_TRACE_MEMORY 0
// Set this to true to log garbage collections as they occur.
#define WREN_DEBUG_TRACE_GC 0
// Set this to true to print out the compiled bytecode of each function.
#define WREN_DEBUG_DUMP_COMPILED_CODE 0
// Set this to trace each instruction as it's executed.
#define WREN_DEBUG_TRACE_INSTRUCTIONS 0
// The maximum number of module-level variables that may be defined at one time.
// This limitation comes from the 16 bits used for the arguments to
// `CODE_LOAD_MODULE_VAR` and `CODE_STORE_MODULE_VAR`.
#define MAX_MODULE_VARS 65536
// The maximum number of arguments that can be passed to a method. Note that
// this limitation is hardcoded in other places in the VM, in particular, the
// `CODE_CALL_XX` instructions assume a certain maximum number.
#define MAX_PARAMETERS 16
// The maximum name of a method, not including the signature. This is an
// arbitrary but enforced maximum just so we know how long the method name
// strings need to be in the parser.
#define MAX_METHOD_NAME 64
// The maximum length of a method signature. Signatures look like:
//
// foo // Getter.
// foo() // No-argument method.
// foo(_) // One-argument method.
// foo(_,_) // Two-argument method.
// init foo() // Constructor initializer.
//
// The maximum signature length takes into account the longest method name, the
// maximum number of parameters with separators between them, "init ", and "()".
#define MAX_METHOD_SIGNATURE (MAX_METHOD_NAME + (MAX_PARAMETERS * 2) + 6)
// The maximum length of an identifier. The only real reason for this limitation
// is so that error messages mentioning variables can be stack allocated.
#define MAX_VARIABLE_NAME 64
// The maximum number of fields a class can have, including inherited fields.
// This is explicit in the bytecode since `CODE_CLASS` and `CODE_SUBCLASS` take
// a single byte for the number of fields. Note that it's 255 and not 256
// because creating a class takes the *number* of fields, not the *highest
// field index*.
#define MAX_FIELDS 255
// Use the VM's allocator to allocate an object of [type].
#define ALLOCATE(vm, type) \
((type*)wrenReallocate(vm, NULL, 0, sizeof(type)))
// Use the VM's allocator to allocate an object of [mainType] containing a
// flexible array of [count] objects of [arrayType].
#define ALLOCATE_FLEX(vm, mainType, arrayType, count) \
((mainType*)wrenReallocate(vm, NULL, 0, \
sizeof(mainType) + sizeof(arrayType) * (count)))
// Use the VM's allocator to allocate an array of [count] elements of [type].
#define ALLOCATE_ARRAY(vm, type, count) \
((type*)wrenReallocate(vm, NULL, 0, sizeof(type) * (count)))
// Use the VM's allocator to free the previously allocated memory at [pointer].
#define DEALLOCATE(vm, pointer) wrenReallocate(vm, pointer, 0, 0)
// The Microsoft compiler does not support the "inline" modifier when compiling
// as plain C.
#if defined( _MSC_VER ) && !defined(__cplusplus)
#define inline _inline
#endif
// This is used to clearly mark flexible-sized arrays that appear at the end of
// some dynamically-allocated structs, known as the "struct hack".
#if __STDC_VERSION__ >= 199901L
// In C99, a flexible array member is just "[]".
#define FLEXIBLE_ARRAY
#else
// Elsewhere, use a zero-sized array. It's technically undefined behavior,
// but works reliably in most known compilers.
#define FLEXIBLE_ARRAY 0
#endif
// Assertions are used to validate program invariants. They indicate things the
// program expects to be true about its internal state during execution. If an
// assertion fails, there is a bug in Wren.
//
// Assertions add significant overhead, so are only enabled in debug builds.
#ifdef DEBUG
#include <stdio.h>
#define ASSERT(condition, message) \
do \
{ \
if (!(condition)) \
{ \
fprintf(stderr, "[%s:%d] Assert failed in %s(): %s\n", \
__FILE__, __LINE__, __func__, message); \
abort(); \
} \
} \
while(0)
// Indicates that we know execution should never reach this point in the
// program. In debug mode, we assert this fact because it's a bug to get here.
//
// In release mode, we use compiler-specific built in functions to tell the
// compiler the code can't be reached. This avoids "missing return" warnings
// in some cases and also lets it perform some optimizations by assuming the
// code is never reached.
#define UNREACHABLE() \
do \
{ \
fprintf(stderr, "[%s:%d] This code should not be reached in %s()\n", \
__FILE__, __LINE__, __func__); \
abort(); \
} \
while (0)
#else
#define ASSERT(condition, message) do {} while (0)
// Tell the compiler that this part of the code will never be reached.
#if defined( _MSC_VER )
#define UNREACHABLE() __assume(0)
#elif (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))
#define UNREACHABLE() __builtin_unreachable()
#else
#define UNREACHABLE()
#endif
#endif
#endif

3597
deps/wren/src/vm/wren_compiler.c vendored Normal file

File diff suppressed because it is too large Load Diff

57
deps/wren/src/vm/wren_compiler.h vendored Normal file
View File

@ -0,0 +1,57 @@
#ifndef wren_compiler_h
#define wren_compiler_h
#include "wren.h"
#include "wren_value.h"
typedef struct sCompiler Compiler;
// This module defines the compiler for Wren. It takes a string of source code
// and lexes, parses, and compiles it. Wren uses a single-pass compiler. It
// does not build an actual AST during parsing and then consume that to
// generate code. Instead, the parser directly emits bytecode.
//
// This forces a few restrictions on the grammar and semantics of the language.
// Things like forward references and arbitrary lookahead are much harder. We
// get a lot in return for that, though.
//
// The implementation is much simpler since we don't need to define a bunch of
// AST data structures. More so, we don't have to deal with managing memory for
// AST objects. The compiler does almost no dynamic allocation while running.
//
// Compilation is also faster since we don't create a bunch of temporary data
// structures and destroy them after generating code.
// Compiles [source], a string of Wren source code located in [module], to an
// [ObjFn] that will execute that code when invoked. Returns `NULL` if the
// source contains any syntax errors.
//
// If [isExpression] is `true`, [source] should be a single expression, and
// this compiles it to a function that evaluates and returns that expression.
// Otherwise, [source] should be a series of top level statements.
//
// If [printErrors] is `true`, any compile errors are output to stderr.
// Otherwise, they are silently discarded.
ObjFn* wrenCompile(WrenVM* vm, ObjModule* module, const char* source,
bool isExpression, bool printErrors);
// When a class is defined, its superclass is not known until runtime since
// class definitions are just imperative statements. Most of the bytecode for a
// a method doesn't care, but there are two places where it matters:
//
// - To load or store a field, we need to know the index of the field in the
// instance's field array. We need to adjust this so that subclass fields
// are positioned after superclass fields, and we don't know this until the
// superclass is known.
//
// - Superclass calls need to know which superclass to dispatch to.
//
// We could handle this dynamically, but that adds overhead. Instead, when a
// method is bound, we walk the bytecode for the function and patch it up.
void wrenBindMethodCode(ObjClass* classObj, ObjFn* fn);
// Reaches all of the heap-allocated objects in use by [compiler] (and all of
// its parents) so that they are not collected by the GC.
void wrenMarkCompiler(WrenVM* vm, Compiler* compiler);
#endif

1393
deps/wren/src/vm/wren_core.c vendored Normal file

File diff suppressed because it is too large Load Diff

23
deps/wren/src/vm/wren_core.h vendored Normal file
View File

@ -0,0 +1,23 @@
#ifndef wren_core_h
#define wren_core_h
#include "wren_vm.h"
// This module defines the built-in classes and their primitives methods that
// are implemented directly in C code. Some languages try to implement as much
// of the core module itself in the primary language instead of in the host
// language.
//
// With Wren, we try to do as much of it in C as possible. Primitive methods
// are always faster than code written in Wren, and it minimizes startup time
// since we don't have to parse, compile, and execute Wren code.
//
// There is one limitation, though. Methods written in C cannot call Wren ones.
// They can only be the top of the callstack, and immediately return. This
// makes it difficult to have primitive methods that rely on polymorphic
// behavior. For example, `IO.write` should call `toString` on its argument,
// including user-defined `toString` methods on user-defined classes.
void wrenInitializeCore(WrenVM* vm);
#endif

438
deps/wren/src/vm/wren_core.wren vendored Normal file
View File

@ -0,0 +1,438 @@
class Bool {}
class Fiber {}
class Fn {}
class Null {}
class Num {}
class Sequence {
all(f) {
var result = true
for (element in this) {
result = f.call(element)
if (!result) return result
}
return result
}
any(f) {
var result = false
for (element in this) {
result = f.call(element)
if (result) return result
}
return result
}
contains(element) {
for (item in this) {
if (element == item) return true
}
return false
}
count {
var result = 0
for (element in this) {
result = result + 1
}
return result
}
count(f) {
var result = 0
for (element in this) {
if (f.call(element)) result = result + 1
}
return result
}
each(f) {
for (element in this) {
f.call(element)
}
}
isEmpty { iterate(null) ? false : true }
map(transformation) { MapSequence.new(this, transformation) }
skip(count) {
if (!(count is Num) || !count.isInteger || count < 0) {
Fiber.abort("Count must be a non-negative integer.")
}
return SkipSequence.new(this, count)
}
take(count) {
if (!(count is Num) || !count.isInteger || count < 0) {
Fiber.abort("Count must be a non-negative integer.")
}
return TakeSequence.new(this, count)
}
where(predicate) { WhereSequence.new(this, predicate) }
reduce(acc, f) {
for (element in this) {
acc = f.call(acc, element)
}
return acc
}
reduce(f) {
var iter = iterate(null)
if (!iter) Fiber.abort("Can't reduce an empty sequence.")
// Seed with the first element.
var result = iteratorValue(iter)
while (iter = iterate(iter)) {
result = f.call(result, iteratorValue(iter))
}
return result
}
join() { join("") }
join(sep) {
var first = true
var result = ""
for (element in this) {
if (!first) result = result + sep
first = false
result = result + element.toString
}
return result
}
toList {
var result = List.new()
for (element in this) {
result.add(element)
}
return result
}
}
class MapSequence is Sequence {
construct new(sequence, fn) {
_sequence = sequence
_fn = fn
}
iterate(iterator) { _sequence.iterate(iterator) }
iteratorValue(iterator) { _fn.call(_sequence.iteratorValue(iterator)) }
}
class SkipSequence is Sequence {
construct new(sequence, count) {
_sequence = sequence
_count = count
}
iterate(iterator) {
if (iterator) {
return _sequence.iterate(iterator)
} else {
iterator = _sequence.iterate(iterator)
var count = _count
while (count > 0 && iterator) {
iterator = _sequence.iterate(iterator)
count = count - 1
}
return iterator
}
}
iteratorValue(iterator) { _sequence.iteratorValue(iterator) }
}
class TakeSequence is Sequence {
construct new(sequence, count) {
_sequence = sequence
_count = count
}
iterate(iterator) {
if (!iterator) _taken = 1 else _taken = _taken + 1
return _taken > _count ? null : _sequence.iterate(iterator)
}
iteratorValue(iterator) { _sequence.iteratorValue(iterator) }
}
class WhereSequence is Sequence {
construct new(sequence, fn) {
_sequence = sequence
_fn = fn
}
iterate(iterator) {
while (iterator = _sequence.iterate(iterator)) {
if (_fn.call(_sequence.iteratorValue(iterator))) break
}
return iterator
}
iteratorValue(iterator) { _sequence.iteratorValue(iterator) }
}
class String is Sequence {
bytes { StringByteSequence.new(this) }
codePoints { StringCodePointSequence.new(this) }
split(delimiter) {
if (!(delimiter is String) || delimiter.isEmpty) {
Fiber.abort("Delimiter must be a non-empty string.")
}
var result = []
var last = 0
var index = 0
var delimSize = delimiter.byteCount_
var size = byteCount_
while (last < size && (index = indexOf(delimiter, last)) != -1) {
result.add(this[last...index])
last = index + delimSize
}
if (last < size) {
result.add(this[last..-1])
} else {
result.add("")
}
return result
}
replace(from, to) {
if (!(from is String) || from.isEmpty) {
Fiber.abort("From must be a non-empty string.")
} else if (!(to is String)) {
Fiber.abort("To must be a string.")
}
var result = ""
var last = 0
var index = 0
var fromSize = from.byteCount_
var size = byteCount_
while (last < size && (index = indexOf(from, last)) != -1) {
result = result + this[last...index] + to
last = index + fromSize
}
if (last < size) result = result + this[last..-1]
return result
}
trim() { trim_("\t\r\n ", true, true) }
trim(chars) { trim_(chars, true, true) }
trimEnd() { trim_("\t\r\n ", false, true) }
trimEnd(chars) { trim_(chars, false, true) }
trimStart() { trim_("\t\r\n ", true, false) }
trimStart(chars) { trim_(chars, true, false) }
trim_(chars, trimStart, trimEnd) {
if (!(chars is String)) {
Fiber.abort("Characters must be a string.")
}
var codePoints = chars.codePoints.toList
var start
if (trimStart) {
while (start = iterate(start)) {
if (!codePoints.contains(codePointAt_(start))) break
}
if (start == false) return ""
} else {
start = 0
}
var end
if (trimEnd) {
end = byteCount_ - 1
while (end >= start) {
var codePoint = codePointAt_(end)
if (codePoint != -1 && !codePoints.contains(codePoint)) break
end = end - 1
}
if (end < start) return ""
} else {
end = -1
}
return this[start..end]
}
*(count) {
if (!(count is Num) || !count.isInteger || count < 0) {
Fiber.abort("Count must be a non-negative integer.")
}
var result = ""
for (i in 0...count) {
result = result + this
}
return result
}
}
class StringByteSequence is Sequence {
construct new(string) {
_string = string
}
[index] { _string.byteAt_(index) }
iterate(iterator) { _string.iterateByte_(iterator) }
iteratorValue(iterator) { _string.byteAt_(iterator) }
count { _string.byteCount_ }
}
class StringCodePointSequence is Sequence {
construct new(string) {
_string = string
}
[index] { _string.codePointAt_(index) }
iterate(iterator) { _string.iterate(iterator) }
iteratorValue(iterator) { _string.codePointAt_(iterator) }
count { _string.count }
}
class List is Sequence {
addAll(other) {
for (element in other) {
add(element)
}
return other
}
toString { "[%(join(", "))]" }
+(other) {
var result = this[0..-1]
for (element in other) {
result.add(element)
}
return result
}
*(count) {
if (!(count is Num) || !count.isInteger || count < 0) {
Fiber.abort("Count must be a non-negative integer.")
}
var result = []
for (i in 0...count) {
result.addAll(this)
}
return result
}
}
class Map is Sequence {
keys { MapKeySequence.new(this) }
values { MapValueSequence.new(this) }
toString {
var first = true
var result = "{"
for (key in keys) {
if (!first) result = result + ", "
first = false
result = result + "%(key): %(this[key])"
}
return result + "}"
}
iteratorValue(iterator) {
return MapEntry.new(
keyIteratorValue_(iterator),
valueIteratorValue_(iterator))
}
}
class MapEntry {
construct new(key, value) {
_key = key
_value = value
}
key { _key }
value { _value }
toString { "%(_key):%(_value)" }
}
class MapKeySequence is Sequence {
construct new(map) {
_map = map
}
iterate(n) { _map.iterate(n) }
iteratorValue(iterator) { _map.keyIteratorValue_(iterator) }
}
class MapValueSequence is Sequence {
construct new(map) {
_map = map
}
iterate(n) { _map.iterate(n) }
iteratorValue(iterator) { _map.valueIteratorValue_(iterator) }
}
class Range is Sequence {}
class System {
static print() {
writeString_("\n")
}
static print(obj) {
writeObject_(obj)
writeString_("\n")
return obj
}
static printAll(sequence) {
for (object in sequence) writeObject_(object)
writeString_("\n")
}
static write(obj) {
writeObject_(obj)
return obj
}
static writeAll(sequence) {
for (object in sequence) writeObject_(object)
}
static writeObject_(obj) {
var string = obj.toString
if (string is String) {
writeString_(string)
} else {
writeString_("[invalid toString]")
}
}
}

440
deps/wren/src/vm/wren_core.wren.inc vendored Normal file
View File

@ -0,0 +1,440 @@
// Generated automatically from src/vm/wren_core.wren. Do not edit.
static const char* coreModuleSource =
"class Bool {}\n"
"class Fiber {}\n"
"class Fn {}\n"
"class Null {}\n"
"class Num {}\n"
"\n"
"class Sequence {\n"
" all(f) {\n"
" var result = true\n"
" for (element in this) {\n"
" result = f.call(element)\n"
" if (!result) return result\n"
" }\n"
" return result\n"
" }\n"
"\n"
" any(f) {\n"
" var result = false\n"
" for (element in this) {\n"
" result = f.call(element)\n"
" if (result) return result\n"
" }\n"
" return result\n"
" }\n"
"\n"
" contains(element) {\n"
" for (item in this) {\n"
" if (element == item) return true\n"
" }\n"
" return false\n"
" }\n"
"\n"
" count {\n"
" var result = 0\n"
" for (element in this) {\n"
" result = result + 1\n"
" }\n"
" return result\n"
" }\n"
"\n"
" count(f) {\n"
" var result = 0\n"
" for (element in this) {\n"
" if (f.call(element)) result = result + 1\n"
" }\n"
" return result\n"
" }\n"
"\n"
" each(f) {\n"
" for (element in this) {\n"
" f.call(element)\n"
" }\n"
" }\n"
"\n"
" isEmpty { iterate(null) ? false : true }\n"
"\n"
" map(transformation) { MapSequence.new(this, transformation) }\n"
"\n"
" skip(count) {\n"
" if (!(count is Num) || !count.isInteger || count < 0) {\n"
" Fiber.abort(\"Count must be a non-negative integer.\")\n"
" }\n"
"\n"
" return SkipSequence.new(this, count)\n"
" }\n"
"\n"
" take(count) {\n"
" if (!(count is Num) || !count.isInteger || count < 0) {\n"
" Fiber.abort(\"Count must be a non-negative integer.\")\n"
" }\n"
"\n"
" return TakeSequence.new(this, count)\n"
" }\n"
"\n"
" where(predicate) { WhereSequence.new(this, predicate) }\n"
"\n"
" reduce(acc, f) {\n"
" for (element in this) {\n"
" acc = f.call(acc, element)\n"
" }\n"
" return acc\n"
" }\n"
"\n"
" reduce(f) {\n"
" var iter = iterate(null)\n"
" if (!iter) Fiber.abort(\"Can't reduce an empty sequence.\")\n"
"\n"
" // Seed with the first element.\n"
" var result = iteratorValue(iter)\n"
" while (iter = iterate(iter)) {\n"
" result = f.call(result, iteratorValue(iter))\n"
" }\n"
"\n"
" return result\n"
" }\n"
"\n"
" join() { join(\"\") }\n"
"\n"
" join(sep) {\n"
" var first = true\n"
" var result = \"\"\n"
"\n"
" for (element in this) {\n"
" if (!first) result = result + sep\n"
" first = false\n"
" result = result + element.toString\n"
" }\n"
"\n"
" return result\n"
" }\n"
"\n"
" toList {\n"
" var result = List.new()\n"
" for (element in this) {\n"
" result.add(element)\n"
" }\n"
" return result\n"
" }\n"
"}\n"
"\n"
"class MapSequence is Sequence {\n"
" construct new(sequence, fn) {\n"
" _sequence = sequence\n"
" _fn = fn\n"
" }\n"
"\n"
" iterate(iterator) { _sequence.iterate(iterator) }\n"
" iteratorValue(iterator) { _fn.call(_sequence.iteratorValue(iterator)) }\n"
"}\n"
"\n"
"class SkipSequence is Sequence {\n"
" construct new(sequence, count) {\n"
" _sequence = sequence\n"
" _count = count\n"
" }\n"
"\n"
" iterate(iterator) {\n"
" if (iterator) {\n"
" return _sequence.iterate(iterator)\n"
" } else {\n"
" iterator = _sequence.iterate(iterator)\n"
" var count = _count\n"
" while (count > 0 && iterator) {\n"
" iterator = _sequence.iterate(iterator)\n"
" count = count - 1\n"
" }\n"
" return iterator\n"
" }\n"
" }\n"
"\n"
" iteratorValue(iterator) { _sequence.iteratorValue(iterator) }\n"
"}\n"
"\n"
"class TakeSequence is Sequence {\n"
" construct new(sequence, count) {\n"
" _sequence = sequence\n"
" _count = count\n"
" }\n"
"\n"
" iterate(iterator) {\n"
" if (!iterator) _taken = 1 else _taken = _taken + 1\n"
" return _taken > _count ? null : _sequence.iterate(iterator)\n"
" }\n"
"\n"
" iteratorValue(iterator) { _sequence.iteratorValue(iterator) }\n"
"}\n"
"\n"
"class WhereSequence is Sequence {\n"
" construct new(sequence, fn) {\n"
" _sequence = sequence\n"
" _fn = fn\n"
" }\n"
"\n"
" iterate(iterator) {\n"
" while (iterator = _sequence.iterate(iterator)) {\n"
" if (_fn.call(_sequence.iteratorValue(iterator))) break\n"
" }\n"
" return iterator\n"
" }\n"
"\n"
" iteratorValue(iterator) { _sequence.iteratorValue(iterator) }\n"
"}\n"
"\n"
"class String is Sequence {\n"
" bytes { StringByteSequence.new(this) }\n"
" codePoints { StringCodePointSequence.new(this) }\n"
"\n"
" split(delimiter) {\n"
" if (!(delimiter is String) || delimiter.isEmpty) {\n"
" Fiber.abort(\"Delimiter must be a non-empty string.\")\n"
" }\n"
"\n"
" var result = []\n"
"\n"
" var last = 0\n"
" var index = 0\n"
"\n"
" var delimSize = delimiter.byteCount_\n"
" var size = byteCount_\n"
"\n"
" while (last < size && (index = indexOf(delimiter, last)) != -1) {\n"
" result.add(this[last...index])\n"
" last = index + delimSize\n"
" }\n"
"\n"
" if (last < size) {\n"
" result.add(this[last..-1])\n"
" } else {\n"
" result.add(\"\")\n"
" }\n"
" return result\n"
" }\n"
"\n"
" replace(from, to) {\n"
" if (!(from is String) || from.isEmpty) {\n"
" Fiber.abort(\"From must be a non-empty string.\")\n"
" } else if (!(to is String)) {\n"
" Fiber.abort(\"To must be a string.\")\n"
" }\n"
"\n"
" var result = \"\"\n"
"\n"
" var last = 0\n"
" var index = 0\n"
"\n"
" var fromSize = from.byteCount_\n"
" var size = byteCount_\n"
"\n"
" while (last < size && (index = indexOf(from, last)) != -1) {\n"
" result = result + this[last...index] + to\n"
" last = index + fromSize\n"
" }\n"
"\n"
" if (last < size) result = result + this[last..-1]\n"
"\n"
" return result\n"
" }\n"
"\n"
" trim() { trim_(\"\t\r\n \", true, true) }\n"
" trim(chars) { trim_(chars, true, true) }\n"
" trimEnd() { trim_(\"\t\r\n \", false, true) }\n"
" trimEnd(chars) { trim_(chars, false, true) }\n"
" trimStart() { trim_(\"\t\r\n \", true, false) }\n"
" trimStart(chars) { trim_(chars, true, false) }\n"
"\n"
" trim_(chars, trimStart, trimEnd) {\n"
" if (!(chars is String)) {\n"
" Fiber.abort(\"Characters must be a string.\")\n"
" }\n"
"\n"
" var codePoints = chars.codePoints.toList\n"
"\n"
" var start\n"
" if (trimStart) {\n"
" while (start = iterate(start)) {\n"
" if (!codePoints.contains(codePointAt_(start))) break\n"
" }\n"
"\n"
" if (start == false) return \"\"\n"
" } else {\n"
" start = 0\n"
" }\n"
"\n"
" var end\n"
" if (trimEnd) {\n"
" end = byteCount_ - 1\n"
" while (end >= start) {\n"
" var codePoint = codePointAt_(end)\n"
" if (codePoint != -1 && !codePoints.contains(codePoint)) break\n"
" end = end - 1\n"
" }\n"
"\n"
" if (end < start) return \"\"\n"
" } else {\n"
" end = -1\n"
" }\n"
"\n"
" return this[start..end]\n"
" }\n"
"\n"
" *(count) {\n"
" if (!(count is Num) || !count.isInteger || count < 0) {\n"
" Fiber.abort(\"Count must be a non-negative integer.\")\n"
" }\n"
"\n"
" var result = \"\"\n"
" for (i in 0...count) {\n"
" result = result + this\n"
" }\n"
" return result\n"
" }\n"
"}\n"
"\n"
"class StringByteSequence is Sequence {\n"
" construct new(string) {\n"
" _string = string\n"
" }\n"
"\n"
" [index] { _string.byteAt_(index) }\n"
" iterate(iterator) { _string.iterateByte_(iterator) }\n"
" iteratorValue(iterator) { _string.byteAt_(iterator) }\n"
"\n"
" count { _string.byteCount_ }\n"
"}\n"
"\n"
"class StringCodePointSequence is Sequence {\n"
" construct new(string) {\n"
" _string = string\n"
" }\n"
"\n"
" [index] { _string.codePointAt_(index) }\n"
" iterate(iterator) { _string.iterate(iterator) }\n"
" iteratorValue(iterator) { _string.codePointAt_(iterator) }\n"
"\n"
" count { _string.count }\n"
"}\n"
"\n"
"class List is Sequence {\n"
" addAll(other) {\n"
" for (element in other) {\n"
" add(element)\n"
" }\n"
" return other\n"
" }\n"
"\n"
" toString { \"[%(join(\", \"))]\" }\n"
"\n"
" +(other) {\n"
" var result = this[0..-1]\n"
" for (element in other) {\n"
" result.add(element)\n"
" }\n"
" return result\n"
" }\n"
"\n"
" *(count) {\n"
" if (!(count is Num) || !count.isInteger || count < 0) {\n"
" Fiber.abort(\"Count must be a non-negative integer.\")\n"
" }\n"
"\n"
" var result = []\n"
" for (i in 0...count) {\n"
" result.addAll(this)\n"
" }\n"
" return result\n"
" }\n"
"}\n"
"\n"
"class Map is Sequence {\n"
" keys { MapKeySequence.new(this) }\n"
" values { MapValueSequence.new(this) }\n"
"\n"
" toString {\n"
" var first = true\n"
" var result = \"{\"\n"
"\n"
" for (key in keys) {\n"
" if (!first) result = result + \", \"\n"
" first = false\n"
" result = result + \"%(key): %(this[key])\"\n"
" }\n"
"\n"
" return result + \"}\"\n"
" }\n"
"\n"
" iteratorValue(iterator) {\n"
" return MapEntry.new(\n"
" keyIteratorValue_(iterator),\n"
" valueIteratorValue_(iterator))\n"
" }\n"
"}\n"
"\n"
"class MapEntry {\n"
" construct new(key, value) {\n"
" _key = key\n"
" _value = value\n"
" }\n"
"\n"
" key { _key }\n"
" value { _value }\n"
"\n"
" toString { \"%(_key):%(_value)\" }\n"
"}\n"
"\n"
"class MapKeySequence is Sequence {\n"
" construct new(map) {\n"
" _map = map\n"
" }\n"
"\n"
" iterate(n) { _map.iterate(n) }\n"
" iteratorValue(iterator) { _map.keyIteratorValue_(iterator) }\n"
"}\n"
"\n"
"class MapValueSequence is Sequence {\n"
" construct new(map) {\n"
" _map = map\n"
" }\n"
"\n"
" iterate(n) { _map.iterate(n) }\n"
" iteratorValue(iterator) { _map.valueIteratorValue_(iterator) }\n"
"}\n"
"\n"
"class Range is Sequence {}\n"
"\n"
"class System {\n"
" static print() {\n"
" writeString_(\"\n\")\n"
" }\n"
"\n"
" static print(obj) {\n"
" writeObject_(obj)\n"
" writeString_(\"\n\")\n"
" return obj\n"
" }\n"
"\n"
" static printAll(sequence) {\n"
" for (object in sequence) writeObject_(object)\n"
" writeString_(\"\n\")\n"
" }\n"
"\n"
" static write(obj) {\n"
" writeObject_(obj)\n"
" return obj\n"
" }\n"
"\n"
" static writeAll(sequence) {\n"
" for (object in sequence) writeObject_(object)\n"
" }\n"
"\n"
" static writeObject_(obj) {\n"
" var string = obj.toString\n"
" if (string is String) {\n"
" writeString_(string)\n"
" } else {\n"
" writeString_(\"[invalid toString]\")\n"
" }\n"
" }\n"
"}\n";

387
deps/wren/src/vm/wren_debug.c vendored Normal file
View File

@ -0,0 +1,387 @@
#include <stdio.h>
#include "wren_debug.h"
void wrenDebugPrintStackTrace(WrenVM* vm)
{
// Bail if the host doesn't enable printing errors.
if (vm->config.errorFn == NULL) return;
ObjFiber* fiber = vm->fiber;
if (IS_STRING(fiber->error))
{
vm->config.errorFn(vm, WREN_ERROR_RUNTIME,
NULL, -1, AS_CSTRING(fiber->error));
}
else
{
// TODO: Print something a little useful here. Maybe the name of the error's
// class?
vm->config.errorFn(vm, WREN_ERROR_RUNTIME,
NULL, -1, "[error object]");
}
for (int i = fiber->numFrames - 1; i >= 0; i--)
{
CallFrame* frame = &fiber->frames[i];
ObjFn* fn = frame->closure->fn;
// Skip over stub functions for calling methods from the C API.
if (fn->module == NULL) continue;
// The built-in core module has no name. We explicitly omit it from stack
// traces since we don't want to highlight to a user the implementation
// detail of what part of the core module is written in C and what is Wren.
if (fn->module->name == NULL) continue;
// -1 because IP has advanced past the instruction that it just executed.
int line = fn->debug->sourceLines.data[frame->ip - fn->code.data - 1];
vm->config.errorFn(vm, WREN_ERROR_STACK_TRACE,
fn->module->name->value, line,
fn->debug->name);
}
}
static void dumpObject(Obj* obj)
{
switch (obj->type)
{
case OBJ_CLASS:
printf("[class %s %p]", ((ObjClass*)obj)->name->value, obj);
break;
case OBJ_CLOSURE: printf("[closure %p]", obj); break;
case OBJ_FIBER: printf("[fiber %p]", obj); break;
case OBJ_FN: printf("[fn %p]", obj); break;
case OBJ_FOREIGN: printf("[foreign %p]", obj); break;
case OBJ_INSTANCE: printf("[instance %p]", obj); break;
case OBJ_LIST: printf("[list %p]", obj); break;
case OBJ_MAP: printf("[map %p]", obj); break;
case OBJ_MODULE: printf("[module %p]", obj); break;
case OBJ_RANGE: printf("[range %p]", obj); break;
case OBJ_STRING: printf("%s", ((ObjString*)obj)->value); break;
case OBJ_UPVALUE: printf("[upvalue %p]", obj); break;
default: printf("[unknown object %d]", obj->type); break;
}
}
void wrenDumpValue(Value value)
{
#if WREN_NAN_TAGGING
if (IS_NUM(value))
{
printf("%.14g", AS_NUM(value));
}
else if (IS_OBJ(value))
{
dumpObject(AS_OBJ(value));
}
else
{
switch (GET_TAG(value))
{
case TAG_FALSE: printf("false"); break;
case TAG_NAN: printf("NaN"); break;
case TAG_NULL: printf("null"); break;
case TAG_TRUE: printf("true"); break;
case TAG_UNDEFINED: UNREACHABLE();
}
}
#else
switch (value.type)
{
case VAL_FALSE: printf("false"); break;
case VAL_NULL: printf("null"); break;
case VAL_NUM: printf("%.14g", AS_NUM(value)); break;
case VAL_TRUE: printf("true"); break;
case VAL_OBJ: dumpObject(AS_OBJ(value)); break;
case VAL_UNDEFINED: UNREACHABLE();
}
#endif
}
static int dumpInstruction(WrenVM* vm, ObjFn* fn, int i, int* lastLine)
{
int start = i;
uint8_t* bytecode = fn->code.data;
Code code = (Code)bytecode[i];
int line = fn->debug->sourceLines.data[i];
if (lastLine == NULL || *lastLine != line)
{
printf("%4d:", line);
if (lastLine != NULL) *lastLine = line;
}
else
{
printf(" ");
}
printf(" %04d ", i++);
#define READ_BYTE() (bytecode[i++])
#define READ_SHORT() (i += 2, (bytecode[i - 2] << 8) | bytecode[i - 1])
#define BYTE_INSTRUCTION(name) \
printf("%-16s %5d\n", name, READ_BYTE()); \
break; \
switch (code)
{
case CODE_CONSTANT:
{
int constant = READ_SHORT();
printf("%-16s %5d '", "CONSTANT", constant);
wrenDumpValue(fn->constants.data[constant]);
printf("'\n");
break;
}
case CODE_NULL: printf("NULL\n"); break;
case CODE_FALSE: printf("FALSE\n"); break;
case CODE_TRUE: printf("TRUE\n"); break;
case CODE_LOAD_LOCAL_0: printf("LOAD_LOCAL_0\n"); break;
case CODE_LOAD_LOCAL_1: printf("LOAD_LOCAL_1\n"); break;
case CODE_LOAD_LOCAL_2: printf("LOAD_LOCAL_2\n"); break;
case CODE_LOAD_LOCAL_3: printf("LOAD_LOCAL_3\n"); break;
case CODE_LOAD_LOCAL_4: printf("LOAD_LOCAL_4\n"); break;
case CODE_LOAD_LOCAL_5: printf("LOAD_LOCAL_5\n"); break;
case CODE_LOAD_LOCAL_6: printf("LOAD_LOCAL_6\n"); break;
case CODE_LOAD_LOCAL_7: printf("LOAD_LOCAL_7\n"); break;
case CODE_LOAD_LOCAL_8: printf("LOAD_LOCAL_8\n"); break;
case CODE_LOAD_LOCAL: BYTE_INSTRUCTION("LOAD_LOCAL");
case CODE_STORE_LOCAL: BYTE_INSTRUCTION("STORE_LOCAL");
case CODE_LOAD_UPVALUE: BYTE_INSTRUCTION("LOAD_UPVALUE");
case CODE_STORE_UPVALUE: BYTE_INSTRUCTION("STORE_UPVALUE");
case CODE_LOAD_MODULE_VAR:
{
int slot = READ_SHORT();
printf("%-16s %5d '%s'\n", "LOAD_MODULE_VAR", slot,
fn->module->variableNames.data[slot]->value);
break;
}
case CODE_STORE_MODULE_VAR:
{
int slot = READ_SHORT();
printf("%-16s %5d '%s'\n", "STORE_MODULE_VAR", slot,
fn->module->variableNames.data[slot]->value);
break;
}
case CODE_LOAD_FIELD_THIS: BYTE_INSTRUCTION("LOAD_FIELD_THIS");
case CODE_STORE_FIELD_THIS: BYTE_INSTRUCTION("STORE_FIELD_THIS");
case CODE_LOAD_FIELD: BYTE_INSTRUCTION("LOAD_FIELD");
case CODE_STORE_FIELD: BYTE_INSTRUCTION("STORE_FIELD");
case CODE_POP: printf("POP\n"); break;
case CODE_CALL_0:
case CODE_CALL_1:
case CODE_CALL_2:
case CODE_CALL_3:
case CODE_CALL_4:
case CODE_CALL_5:
case CODE_CALL_6:
case CODE_CALL_7:
case CODE_CALL_8:
case CODE_CALL_9:
case CODE_CALL_10:
case CODE_CALL_11:
case CODE_CALL_12:
case CODE_CALL_13:
case CODE_CALL_14:
case CODE_CALL_15:
case CODE_CALL_16:
{
int numArgs = bytecode[i - 1] - CODE_CALL_0;
int symbol = READ_SHORT();
printf("CALL_%-11d %5d '%s'\n", numArgs, symbol,
vm->methodNames.data[symbol]->value);
break;
}
case CODE_SUPER_0:
case CODE_SUPER_1:
case CODE_SUPER_2:
case CODE_SUPER_3:
case CODE_SUPER_4:
case CODE_SUPER_5:
case CODE_SUPER_6:
case CODE_SUPER_7:
case CODE_SUPER_8:
case CODE_SUPER_9:
case CODE_SUPER_10:
case CODE_SUPER_11:
case CODE_SUPER_12:
case CODE_SUPER_13:
case CODE_SUPER_14:
case CODE_SUPER_15:
case CODE_SUPER_16:
{
int numArgs = bytecode[i - 1] - CODE_SUPER_0;
int symbol = READ_SHORT();
int superclass = READ_SHORT();
printf("SUPER_%-10d %5d '%s' %5d\n", numArgs, symbol,
vm->methodNames.data[symbol]->value, superclass);
break;
}
case CODE_JUMP:
{
int offset = READ_SHORT();
printf("%-16s %5d to %d\n", "JUMP", offset, i + offset);
break;
}
case CODE_LOOP:
{
int offset = READ_SHORT();
printf("%-16s %5d to %d\n", "LOOP", offset, i - offset);
break;
}
case CODE_JUMP_IF:
{
int offset = READ_SHORT();
printf("%-16s %5d to %d\n", "JUMP_IF", offset, i + offset);
break;
}
case CODE_AND:
{
int offset = READ_SHORT();
printf("%-16s %5d to %d\n", "AND", offset, i + offset);
break;
}
case CODE_OR:
{
int offset = READ_SHORT();
printf("%-16s %5d to %d\n", "OR", offset, i + offset);
break;
}
case CODE_CLOSE_UPVALUE: printf("CLOSE_UPVALUE\n"); break;
case CODE_RETURN: printf("RETURN\n"); break;
case CODE_CLOSURE:
{
int constant = READ_SHORT();
printf("%-16s %5d ", "CLOSURE", constant);
wrenDumpValue(fn->constants.data[constant]);
printf(" ");
ObjFn* loadedFn = AS_FN(fn->constants.data[constant]);
for (int j = 0; j < loadedFn->numUpvalues; j++)
{
int isLocal = READ_BYTE();
int index = READ_BYTE();
if (j > 0) printf(", ");
printf("%s %d", isLocal ? "local" : "upvalue", index);
}
printf("\n");
break;
}
case CODE_CONSTRUCT: printf("CONSTRUCT\n"); break;
case CODE_FOREIGN_CONSTRUCT: printf("FOREIGN_CONSTRUCT\n"); break;
case CODE_CLASS:
{
int numFields = READ_BYTE();
printf("%-16s %5d fields\n", "CLASS", numFields);
break;
}
case CODE_FOREIGN_CLASS: printf("FOREIGN_CLASS\n"); break;
case CODE_METHOD_INSTANCE:
{
int symbol = READ_SHORT();
printf("%-16s %5d '%s'\n", "METHOD_INSTANCE", symbol,
vm->methodNames.data[symbol]->value);
break;
}
case CODE_METHOD_STATIC:
{
int symbol = READ_SHORT();
printf("%-16s %5d '%s'\n", "METHOD_STATIC", symbol,
vm->methodNames.data[symbol]->value);
break;
}
case CODE_END_MODULE:
printf("END_MODULE\n");
break;
case CODE_IMPORT_MODULE:
{
int name = READ_SHORT();
printf("%-16s %5d '", "IMPORT_MODULE", name);
wrenDumpValue(fn->constants.data[name]);
printf("'\n");
break;
}
case CODE_IMPORT_VARIABLE:
{
int variable = READ_SHORT();
printf("%-16s %5d '", "IMPORT_VARIABLE", variable);
wrenDumpValue(fn->constants.data[variable]);
printf("'\n");
break;
}
case CODE_END:
printf("END\n");
break;
default:
printf("UKNOWN! [%d]\n", bytecode[i - 1]);
break;
}
// Return how many bytes this instruction takes, or -1 if it's an END.
if (code == CODE_END) return -1;
return i - start;
#undef READ_BYTE
#undef READ_SHORT
}
int wrenDumpInstruction(WrenVM* vm, ObjFn* fn, int i)
{
return dumpInstruction(vm, fn, i, NULL);
}
void wrenDumpCode(WrenVM* vm, ObjFn* fn)
{
printf("%s: %s\n",
fn->module->name == NULL ? "<core>" : fn->module->name->value,
fn->debug->name);
int i = 0;
int lastLine = -1;
for (;;)
{
int offset = dumpInstruction(vm, fn, i, &lastLine);
if (offset == -1) break;
i += offset;
}
printf("\n");
}
void wrenDumpStack(ObjFiber* fiber)
{
printf("(fiber %p) ", fiber);
for (Value* slot = fiber->stack; slot < fiber->stackTop; slot++)
{
wrenDumpValue(*slot);
printf(" | ");
}
printf("\n");
}

27
deps/wren/src/vm/wren_debug.h vendored Normal file
View File

@ -0,0 +1,27 @@
#ifndef wren_debug_h
#define wren_debug_h
#include "wren_value.h"
#include "wren_vm.h"
// Prints the stack trace for the current fiber.
//
// Used when a fiber throws a runtime error which is not caught.
void wrenDebugPrintStackTrace(WrenVM* vm);
// The "dump" functions are used for debugging Wren itself. Normal code paths
// will not call them unless one of the various DEBUG_ flags is enabled.
// Prints a representation of [value] to stdout.
void wrenDumpValue(Value value);
// Prints a representation of the bytecode for [fn] at instruction [i].
int wrenDumpInstruction(WrenVM* vm, ObjFn* fn, int i);
// Prints the disassembled code for [fn] to stdout.
void wrenDumpCode(WrenVM* vm, ObjFn* fn);
// Prints the contents of the current stack for [fiber] to stdout.
void wrenDumpStack(ObjFiber* fiber);
#endif

213
deps/wren/src/vm/wren_opcodes.h vendored Normal file
View File

@ -0,0 +1,213 @@
// This defines the bytecode instructions used by the VM. It does so by invoking
// an OPCODE() macro which is expected to be defined at the point that this is
// included. (See: http://en.wikipedia.org/wiki/X_Macro for more.)
//
// The first argument is the name of the opcode. The second is its "stack
// effect" -- the amount that the op code changes the size of the stack. A
// stack effect of 1 means it pushes a value and the stack grows one larger.
// -2 means it pops two values, etc.
//
// Note that the order of instructions here affects the order of the dispatch
// table in the VM's interpreter loop. That in turn affects caching which
// affects overall performance. Take care to run benchmarks if you change the
// order here.
// Load the constant at index [arg].
OPCODE(CONSTANT, 1)
// Push null onto the stack.
OPCODE(NULL, 1)
// Push false onto the stack.
OPCODE(FALSE, 1)
// Push true onto the stack.
OPCODE(TRUE, 1)
// Pushes the value in the given local slot.
OPCODE(LOAD_LOCAL_0, 1)
OPCODE(LOAD_LOCAL_1, 1)
OPCODE(LOAD_LOCAL_2, 1)
OPCODE(LOAD_LOCAL_3, 1)
OPCODE(LOAD_LOCAL_4, 1)
OPCODE(LOAD_LOCAL_5, 1)
OPCODE(LOAD_LOCAL_6, 1)
OPCODE(LOAD_LOCAL_7, 1)
OPCODE(LOAD_LOCAL_8, 1)
// Note: The compiler assumes the following _STORE instructions always
// immediately follow their corresponding _LOAD ones.
// Pushes the value in local slot [arg].
OPCODE(LOAD_LOCAL, 1)
// Stores the top of stack in local slot [arg]. Does not pop it.
OPCODE(STORE_LOCAL, 0)
// Pushes the value in upvalue [arg].
OPCODE(LOAD_UPVALUE, 1)
// Stores the top of stack in upvalue [arg]. Does not pop it.
OPCODE(STORE_UPVALUE, 0)
// Pushes the value of the top-level variable in slot [arg].
OPCODE(LOAD_MODULE_VAR, 1)
// Stores the top of stack in top-level variable slot [arg]. Does not pop it.
OPCODE(STORE_MODULE_VAR, 0)
// Pushes the value of the field in slot [arg] of the receiver of the current
// function. This is used for regular field accesses on "this" directly in
// methods. This instruction is faster than the more general CODE_LOAD_FIELD
// instruction.
OPCODE(LOAD_FIELD_THIS, 1)
// Stores the top of the stack in field slot [arg] in the receiver of the
// current value. Does not pop the value. This instruction is faster than the
// more general CODE_LOAD_FIELD instruction.
OPCODE(STORE_FIELD_THIS, 0)
// Pops an instance and pushes the value of the field in slot [arg] of it.
OPCODE(LOAD_FIELD, 0)
// Pops an instance and stores the subsequent top of stack in field slot
// [arg] in it. Does not pop the value.
OPCODE(STORE_FIELD, -1)
// Pop and discard the top of stack.
OPCODE(POP, -1)
// Invoke the method with symbol [arg]. The number indicates the number of
// arguments (not including the receiver).
OPCODE(CALL_0, 0)
OPCODE(CALL_1, -1)
OPCODE(CALL_2, -2)
OPCODE(CALL_3, -3)
OPCODE(CALL_4, -4)
OPCODE(CALL_5, -5)
OPCODE(CALL_6, -6)
OPCODE(CALL_7, -7)
OPCODE(CALL_8, -8)
OPCODE(CALL_9, -9)
OPCODE(CALL_10, -10)
OPCODE(CALL_11, -11)
OPCODE(CALL_12, -12)
OPCODE(CALL_13, -13)
OPCODE(CALL_14, -14)
OPCODE(CALL_15, -15)
OPCODE(CALL_16, -16)
// Invoke a superclass method with symbol [arg]. The number indicates the
// number of arguments (not including the receiver).
OPCODE(SUPER_0, 0)
OPCODE(SUPER_1, -1)
OPCODE(SUPER_2, -2)
OPCODE(SUPER_3, -3)
OPCODE(SUPER_4, -4)
OPCODE(SUPER_5, -5)
OPCODE(SUPER_6, -6)
OPCODE(SUPER_7, -7)
OPCODE(SUPER_8, -8)
OPCODE(SUPER_9, -9)
OPCODE(SUPER_10, -10)
OPCODE(SUPER_11, -11)
OPCODE(SUPER_12, -12)
OPCODE(SUPER_13, -13)
OPCODE(SUPER_14, -14)
OPCODE(SUPER_15, -15)
OPCODE(SUPER_16, -16)
// Jump the instruction pointer [arg] forward.
OPCODE(JUMP, 0)
// Jump the instruction pointer [arg] backward.
OPCODE(LOOP, 0)
// Pop and if not truthy then jump the instruction pointer [arg] forward.
OPCODE(JUMP_IF, -1)
// If the top of the stack is false, jump [arg] forward. Otherwise, pop and
// continue.
OPCODE(AND, -1)
// If the top of the stack is non-false, jump [arg] forward. Otherwise, pop
// and continue.
OPCODE(OR, -1)
// Close the upvalue for the local on the top of the stack, then pop it.
OPCODE(CLOSE_UPVALUE, -1)
// Exit from the current function and return the value on the top of the
// stack.
OPCODE(RETURN, 0)
// Creates a closure for the function stored at [arg] in the constant table.
//
// Following the function argument is a number of arguments, two for each
// upvalue. The first is true if the variable being captured is a local (as
// opposed to an upvalue), and the second is the index of the local or
// upvalue being captured.
//
// Pushes the created closure.
OPCODE(CLOSURE, 1)
// Creates a new instance of a class.
//
// Assumes the class object is in slot zero, and replaces it with the new
// uninitialized instance of that class. This opcode is only emitted by the
// compiler-generated constructor metaclass methods.
OPCODE(CONSTRUCT, 0)
// Creates a new instance of a foreign class.
//
// Assumes the class object is in slot zero, and replaces it with the new
// uninitialized instance of that class. This opcode is only emitted by the
// compiler-generated constructor metaclass methods.
OPCODE(FOREIGN_CONSTRUCT, 0)
// Creates a class. Top of stack is the superclass. Below that is a string for
// the name of the class. Byte [arg] is the number of fields in the class.
OPCODE(CLASS, -1)
// Creates a foreign class. Top of stack is the superclass. Below that is a
// string for the name of the class.
OPCODE(FOREIGN_CLASS, -1)
// Define a method for symbol [arg]. The class receiving the method is popped
// off the stack, then the function defining the body is popped.
//
// If a foreign method is being defined, the "function" will be a string
// identifying the foreign method. Otherwise, it will be a function or
// closure.
OPCODE(METHOD_INSTANCE, -2)
// Define a method for symbol [arg]. The class whose metaclass will receive
// the method is popped off the stack, then the function defining the body is
// popped.
//
// If a foreign method is being defined, the "function" will be a string
// identifying the foreign method. Otherwise, it will be a function or
// closure.
OPCODE(METHOD_STATIC, -2)
// This is executed at the end of the module's body. Pushes NULL onto the stack
// as the "return value" of the import statement and stores the module as the
// most recently imported one.
OPCODE(END_MODULE, 1)
// Import a module whose name is the string stored at [arg] in the constant
// table.
//
// Pushes null onto the stack so that the fiber for the imported module can
// replace that with a dummy value when it returns. (Fibers always return a
// value when resuming a caller.)
OPCODE(IMPORT_MODULE, 1)
// Import a variable from the most recently imported module. The name of the
// variable to import is at [arg] in the constant table. Pushes the loaded
// variable's value.
OPCODE(IMPORT_VARIABLE, 1)
// This pseudo-instruction indicates the end of the bytecode. It should
// always be preceded by a `CODE_RETURN`, so is never actually executed.
OPCODE(END, 0)

125
deps/wren/src/vm/wren_primitive.c vendored Normal file
View File

@ -0,0 +1,125 @@
#include "wren_primitive.h"
#include <math.h>
// Validates that [value] is an integer within `[0, count)`. Also allows
// negative indices which map backwards from the end. Returns the valid positive
// index value. If invalid, reports an error and returns `UINT32_MAX`.
static uint32_t validateIndexValue(WrenVM* vm, uint32_t count, double value,
const char* argName)
{
if (!validateIntValue(vm, value, argName)) return UINT32_MAX;
// Negative indices count from the end.
if (value < 0) value = count + value;
// Check bounds.
if (value >= 0 && value < count) return (uint32_t)value;
vm->fiber->error = wrenStringFormat(vm, "$ out of bounds.", argName);
return UINT32_MAX;
}
bool validateFn(WrenVM* vm, Value arg, const char* argName)
{
if (IS_CLOSURE(arg)) return true;
vm->fiber->error = wrenStringFormat(vm, "$ must be a function.", argName);
return false;
}
bool validateNum(WrenVM* vm, Value arg, const char* argName)
{
if (IS_NUM(arg)) return true;
RETURN_ERROR_FMT("$ must be a number.", argName);
}
bool validateIntValue(WrenVM* vm, double value, const char* argName)
{
if (trunc(value) == value) return true;
RETURN_ERROR_FMT("$ must be an integer.", argName);
}
bool validateInt(WrenVM* vm, Value arg, const char* argName)
{
// Make sure it's a number first.
if (!validateNum(vm, arg, argName)) return false;
return validateIntValue(vm, AS_NUM(arg), argName);
}
bool validateKey(WrenVM* vm, Value arg)
{
if (IS_BOOL(arg) || IS_CLASS(arg) || IS_NULL(arg) ||
IS_NUM(arg) || IS_RANGE(arg) || IS_STRING(arg))
{
return true;
}
RETURN_ERROR("Key must be a value type.");
}
uint32_t validateIndex(WrenVM* vm, Value arg, uint32_t count,
const char* argName)
{
if (!validateNum(vm, arg, argName)) return UINT32_MAX;
return validateIndexValue(vm, count, AS_NUM(arg), argName);
}
bool validateString(WrenVM* vm, Value arg, const char* argName)
{
if (IS_STRING(arg)) return true;
RETURN_ERROR_FMT("$ must be a string.", argName);
}
uint32_t calculateRange(WrenVM* vm, ObjRange* range, uint32_t* length,
int* step)
{
*step = 0;
// Edge case: an empty range is allowed at the end of a sequence. This way,
// list[0..-1] and list[0...list.count] can be used to copy a list even when
// empty.
if (range->from == *length &&
range->to == (range->isInclusive ? -1.0 : (double)*length))
{
*length = 0;
return 0;
}
uint32_t from = validateIndexValue(vm, *length, range->from, "Range start");
if (from == UINT32_MAX) return UINT32_MAX;
// Bounds check the end manually to handle exclusive ranges.
double value = range->to;
if (!validateIntValue(vm, value, "Range end")) return UINT32_MAX;
// Negative indices count from the end.
if (value < 0) value = *length + value;
// Convert the exclusive range to an inclusive one.
if (!range->isInclusive)
{
// An exclusive range with the same start and end points is empty.
if (value == from)
{
*length = 0;
return from;
}
// Shift the endpoint to make it inclusive, handling both increasing and
// decreasing ranges.
value += value >= from ? -1 : 1;
}
// Check bounds.
if (value < 0 || value >= *length)
{
vm->fiber->error = CONST_STRING(vm, "Range end out of bounds.");
return UINT32_MAX;
}
uint32_t to = (uint32_t)value;
*length = abs((int)(from - to)) + 1;
*step = from < to ? 1 : -1;
return from;
}

88
deps/wren/src/vm/wren_primitive.h vendored Normal file
View File

@ -0,0 +1,88 @@
#ifndef wren_primitive_h
#define wren_primitive_h
#include "wren_vm.h"
// Binds a primitive method named [name] (in Wren) implemented using C function
// [fn] to `ObjClass` [cls].
#define PRIMITIVE(cls, name, function) \
{ \
int symbol = wrenSymbolTableEnsure(vm, \
&vm->methodNames, name, strlen(name)); \
Method method; \
method.type = METHOD_PRIMITIVE; \
method.as.primitive = prim_##function; \
wrenBindMethod(vm, cls, symbol, method); \
}
// Defines a primitive method whose C function name is [name]. This abstracts
// the actual type signature of a primitive function and makes it clear which C
// functions are invoked as primitives.
#define DEF_PRIMITIVE(name) \
static bool prim_##name(WrenVM* vm, Value* args)
#define RETURN_VAL(value) do { args[0] = value; return true; } while (0)
#define RETURN_OBJ(obj) RETURN_VAL(OBJ_VAL(obj))
#define RETURN_BOOL(value) RETURN_VAL(BOOL_VAL(value))
#define RETURN_FALSE RETURN_VAL(FALSE_VAL)
#define RETURN_NULL RETURN_VAL(NULL_VAL)
#define RETURN_NUM(value) RETURN_VAL(NUM_VAL(value))
#define RETURN_TRUE RETURN_VAL(TRUE_VAL)
#define RETURN_ERROR(msg) \
do { \
vm->fiber->error = wrenNewStringLength(vm, msg, sizeof(msg) - 1); \
return false; \
} while (0);
#define RETURN_ERROR_FMT(msg, arg) \
do { \
vm->fiber->error = wrenStringFormat(vm, msg, arg); \
return false; \
} while (0);
// Validates that the given [arg] is a function. Returns true if it is. If not,
// reports an error and returns false.
bool validateFn(WrenVM* vm, Value arg, const char* argName);
// Validates that the given [arg] is a Num. Returns true if it is. If not,
// reports an error and returns false.
bool validateNum(WrenVM* vm, Value arg, const char* argName);
// Validates that [value] is an integer. Returns true if it is. If not, reports
// an error and returns false.
bool validateIntValue(WrenVM* vm, double value, const char* argName);
// Validates that the given [arg] is an integer. Returns true if it is. If not,
// reports an error and returns false.
bool validateInt(WrenVM* vm, Value arg, const char* argName);
// Validates that [arg] is a valid object for use as a map key. Returns true if
// it is. If not, reports an error and returns false.
bool validateKey(WrenVM* vm, Value arg);
// Validates that the argument at [argIndex] is an integer within `[0, count)`.
// Also allows negative indices which map backwards from the end. Returns the
// valid positive index value. If invalid, reports an error and returns
// `UINT32_MAX`.
uint32_t validateIndex(WrenVM* vm, Value arg, uint32_t count,
const char* argName);
// Validates that the given [arg] is a String. Returns true if it is. If not,
// reports an error and returns false.
bool validateString(WrenVM* vm, Value arg, const char* argName);
// Given a [range] and the [length] of the object being operated on, determines
// the series of elements that should be chosen from the underlying object.
// Handles ranges that count backwards from the end as well as negative ranges.
//
// Returns the index from which the range should start or `UINT32_MAX` if the
// range is invalid. After calling, [length] will be updated with the number of
// elements in the resulting sequence. [step] will be direction that the range
// is going: `1` if the range is increasing from the start index or `-1` if the
// range is decreasing.
uint32_t calculateRange(WrenVM* vm, ObjRange* range, uint32_t* length,
int* step);
#endif

196
deps/wren/src/vm/wren_utils.c vendored Normal file
View File

@ -0,0 +1,196 @@
#include <string.h>
#include "wren_utils.h"
#include "wren_vm.h"
DEFINE_BUFFER(Byte, uint8_t);
DEFINE_BUFFER(Int, int);
DEFINE_BUFFER(String, ObjString*);
void wrenSymbolTableInit(SymbolTable* symbols)
{
wrenStringBufferInit(symbols);
}
void wrenSymbolTableClear(WrenVM* vm, SymbolTable* symbols)
{
wrenStringBufferClear(vm, symbols);
}
int wrenSymbolTableAdd(WrenVM* vm, SymbolTable* symbols,
const char* name, size_t length)
{
ObjString* symbol = AS_STRING(wrenNewStringLength(vm, name, length));
wrenPushRoot(vm, &symbol->obj);
wrenStringBufferWrite(vm, symbols, symbol);
wrenPopRoot(vm);
return symbols->count - 1;
}
int wrenSymbolTableEnsure(WrenVM* vm, SymbolTable* symbols,
const char* name, size_t length)
{
// See if the symbol is already defined.
int existing = wrenSymbolTableFind(symbols, name, length);
if (existing != -1) return existing;
// New symbol, so add it.
return wrenSymbolTableAdd(vm, symbols, name, length);
}
int wrenSymbolTableFind(const SymbolTable* symbols,
const char* name, size_t length)
{
// See if the symbol is already defined.
// TODO: O(n). Do something better.
for (int i = 0; i < symbols->count; i++)
{
if (wrenStringEqualsCString(symbols->data[i], name, length)) return i;
}
return -1;
}
void wrenBlackenSymbolTable(WrenVM* vm, SymbolTable* symbolTable)
{
for (int i = 0; i < symbolTable->count; i++)
{
wrenGrayObj(vm, &symbolTable->data[i]->obj);
}
// Keep track of how much memory is still in use.
vm->bytesAllocated += symbolTable->capacity * sizeof(*symbolTable->data);
}
int wrenUtf8EncodeNumBytes(int value)
{
ASSERT(value >= 0, "Cannot encode a negative value.");
if (value <= 0x7f) return 1;
if (value <= 0x7ff) return 2;
if (value <= 0xffff) return 3;
if (value <= 0x10ffff) return 4;
return 0;
}
int wrenUtf8Encode(int value, uint8_t* bytes)
{
if (value <= 0x7f)
{
// Single byte (i.e. fits in ASCII).
*bytes = value & 0x7f;
return 1;
}
else if (value <= 0x7ff)
{
// Two byte sequence: 110xxxxx 10xxxxxx.
*bytes = 0xc0 | ((value & 0x7c0) >> 6);
bytes++;
*bytes = 0x80 | (value & 0x3f);
return 2;
}
else if (value <= 0xffff)
{
// Three byte sequence: 1110xxxx 10xxxxxx 10xxxxxx.
*bytes = 0xe0 | ((value & 0xf000) >> 12);
bytes++;
*bytes = 0x80 | ((value & 0xfc0) >> 6);
bytes++;
*bytes = 0x80 | (value & 0x3f);
return 3;
}
else if (value <= 0x10ffff)
{
// Four byte sequence: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
*bytes = 0xf0 | ((value & 0x1c0000) >> 18);
bytes++;
*bytes = 0x80 | ((value & 0x3f000) >> 12);
bytes++;
*bytes = 0x80 | ((value & 0xfc0) >> 6);
bytes++;
*bytes = 0x80 | (value & 0x3f);
return 4;
}
// Invalid Unicode value. See: http://tools.ietf.org/html/rfc3629
UNREACHABLE();
return 0;
}
int wrenUtf8Decode(const uint8_t* bytes, uint32_t length)
{
// Single byte (i.e. fits in ASCII).
if (*bytes <= 0x7f) return *bytes;
int value;
uint32_t remainingBytes;
if ((*bytes & 0xe0) == 0xc0)
{
// Two byte sequence: 110xxxxx 10xxxxxx.
value = *bytes & 0x1f;
remainingBytes = 1;
}
else if ((*bytes & 0xf0) == 0xe0)
{
// Three byte sequence: 1110xxxx 10xxxxxx 10xxxxxx.
value = *bytes & 0x0f;
remainingBytes = 2;
}
else if ((*bytes & 0xf8) == 0xf0)
{
// Four byte sequence: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
value = *bytes & 0x07;
remainingBytes = 3;
}
else
{
// Invalid UTF-8 sequence.
return -1;
}
// Don't read past the end of the buffer on truncated UTF-8.
if (remainingBytes > length - 1) return -1;
while (remainingBytes > 0)
{
bytes++;
remainingBytes--;
// Remaining bytes must be of form 10xxxxxx.
if ((*bytes & 0xc0) != 0x80) return -1;
value = value << 6 | (*bytes & 0x3f);
}
return value;
}
int wrenUtf8DecodeNumBytes(uint8_t byte)
{
// If the byte starts with 10xxxxx, it's the middle of a UTF-8 sequence, so
// don't count it at all.
if ((byte & 0xc0) == 0x80) return 0;
// The first byte's high bits tell us how many bytes are in the UTF-8
// sequence.
if ((byte & 0xf8) == 0xf0) return 4;
if ((byte & 0xf0) == 0xe0) return 3;
if ((byte & 0xe0) == 0xc0) return 2;
return 1;
}
// From: http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2Float
int wrenPowerOf2Ceil(int n)
{
n--;
n |= n >> 1;
n |= n >> 2;
n |= n >> 4;
n |= n >> 8;
n |= n >> 16;
n++;
return n;
}

121
deps/wren/src/vm/wren_utils.h vendored Normal file
View File

@ -0,0 +1,121 @@
#ifndef wren_utils_h
#define wren_utils_h
#include "wren.h"
#include "wren_common.h"
// Reusable data structures and other utility functions.
// Forward declare this here to break a cycle between wren_utils.h and
// wren_value.h.
typedef struct sObjString ObjString;
// We need buffers of a few different types. To avoid lots of casting between
// void* and back, we'll use the preprocessor as a poor man's generics and let
// it generate a few type-specific ones.
#define DECLARE_BUFFER(name, type) \
typedef struct \
{ \
type* data; \
int count; \
int capacity; \
} name##Buffer; \
void wren##name##BufferInit(name##Buffer* buffer); \
void wren##name##BufferClear(WrenVM* vm, name##Buffer* buffer); \
void wren##name##BufferFill(WrenVM* vm, name##Buffer* buffer, type data, \
int count); \
void wren##name##BufferWrite(WrenVM* vm, name##Buffer* buffer, type data)
// This should be used once for each type instantiation, somewhere in a .c file.
#define DEFINE_BUFFER(name, type) \
void wren##name##BufferInit(name##Buffer* buffer) \
{ \
buffer->data = NULL; \
buffer->capacity = 0; \
buffer->count = 0; \
} \
\
void wren##name##BufferClear(WrenVM* vm, name##Buffer* buffer) \
{ \
wrenReallocate(vm, buffer->data, 0, 0); \
wren##name##BufferInit(buffer); \
} \
\
void wren##name##BufferFill(WrenVM* vm, name##Buffer* buffer, type data, \
int count) \
{ \
if (buffer->capacity < buffer->count + count) \
{ \
int capacity = wrenPowerOf2Ceil(buffer->count + count); \
buffer->data = (type*)wrenReallocate(vm, buffer->data, \
buffer->capacity * sizeof(type), capacity * sizeof(type)); \
buffer->capacity = capacity; \
} \
\
for (int i = 0; i < count; i++) \
{ \
buffer->data[buffer->count++] = data; \
} \
} \
\
void wren##name##BufferWrite(WrenVM* vm, name##Buffer* buffer, type data) \
{ \
wren##name##BufferFill(vm, buffer, data, 1); \
}
DECLARE_BUFFER(Byte, uint8_t);
DECLARE_BUFFER(Int, int);
DECLARE_BUFFER(String, ObjString*);
// TODO: Change this to use a map.
typedef StringBuffer SymbolTable;
// Initializes the symbol table.
void wrenSymbolTableInit(SymbolTable* symbols);
// Frees all dynamically allocated memory used by the symbol table, but not the
// SymbolTable itself.
void wrenSymbolTableClear(WrenVM* vm, SymbolTable* symbols);
// Adds name to the symbol table. Returns the index of it in the table.
int wrenSymbolTableAdd(WrenVM* vm, SymbolTable* symbols,
const char* name, size_t length);
// Adds name to the symbol table. Returns the index of it in the table. Will
// use an existing symbol if already present.
int wrenSymbolTableEnsure(WrenVM* vm, SymbolTable* symbols,
const char* name, size_t length);
// Looks up name in the symbol table. Returns its index if found or -1 if not.
int wrenSymbolTableFind(const SymbolTable* symbols,
const char* name, size_t length);
void wrenBlackenSymbolTable(WrenVM* vm, SymbolTable* symbolTable);
// Returns the number of bytes needed to encode [value] in UTF-8.
//
// Returns 0 if [value] is too large to encode.
int wrenUtf8EncodeNumBytes(int value);
// Encodes value as a series of bytes in [bytes], which is assumed to be large
// enough to hold the encoded result.
//
// Returns the number of written bytes.
int wrenUtf8Encode(int value, uint8_t* bytes);
// Decodes the UTF-8 sequence starting at [bytes] (which has max [length]),
// returning the code point.
//
// Returns -1 if the bytes are not a valid UTF-8 sequence.
int wrenUtf8Decode(const uint8_t* bytes, uint32_t length);
// Returns the number of bytes in the UTF-8 sequence starting with [byte].
//
// If the character at that index is not the beginning of a UTF-8 sequence,
// returns 0.
int wrenUtf8DecodeNumBytes(uint8_t byte);
// Returns the smallest power of two that is equal to or greater than [n].
int wrenPowerOf2Ceil(int n);
#endif

1315
deps/wren/src/vm/wren_value.c vendored Normal file

File diff suppressed because it is too large Load Diff

876
deps/wren/src/vm/wren_value.h vendored Normal file
View File

@ -0,0 +1,876 @@
#ifndef wren_value_h
#define wren_value_h
#include <stdbool.h>
#include <string.h>
#include "wren_common.h"
#include "wren_utils.h"
// This defines the built-in types and their core representations in memory.
// Since Wren is dynamically typed, any variable can hold a value of any type,
// and the type can change at runtime. Implementing this efficiently is
// critical for performance.
//
// The main type exposed by this is [Value]. A C variable of that type is a
// storage location that can hold any Wren value. The stack, module variables,
// and instance fields are all implemented in C as variables of type Value.
//
// The built-in types for booleans, numbers, and null are unboxed: their value
// is stored directly in the Value, and copying a Value copies the value. Other
// types--classes, instances of classes, functions, lists, and strings--are all
// reference types. They are stored on the heap and the Value just stores a
// pointer to it. Copying the Value copies a reference to the same object. The
// Wren implementation calls these "Obj", or objects, though to a user, all
// values are objects.
//
// There is also a special singleton value "undefined". It is used internally
// but never appears as a real value to a user. It has two uses:
//
// - It is used to identify module variables that have been implicitly declared
// by use in a forward reference but not yet explicitly declared. These only
// exist during compilation and do not appear at runtime.
//
// - It is used to represent unused map entries in an ObjMap.
//
// There are two supported Value representations. The main one uses a technique
// called "NaN tagging" (explained in detail below) to store a number, any of
// the value types, or a pointer, all inside one double-precision floating
// point number. A larger, slower, Value type that uses a struct to store these
// is also supported, and is useful for debugging the VM.
//
// The representation is controlled by the `WREN_NAN_TAGGING` define. If that's
// defined, Nan tagging is used.
// These macros cast a Value to one of the specific object types. These do *not*
// perform any validation, so must only be used after the Value has been
// ensured to be the right type.
#define AS_CLASS(value) ((ObjClass*)AS_OBJ(value)) // ObjClass*
#define AS_CLOSURE(value) ((ObjClosure*)AS_OBJ(value)) // ObjClosure*
#define AS_FIBER(v) ((ObjFiber*)AS_OBJ(v)) // ObjFiber*
#define AS_FN(value) ((ObjFn*)AS_OBJ(value)) // ObjFn*
#define AS_FOREIGN(v) ((ObjForeign*)AS_OBJ(v)) // ObjForeign*
#define AS_INSTANCE(value) ((ObjInstance*)AS_OBJ(value)) // ObjInstance*
#define AS_LIST(value) ((ObjList*)AS_OBJ(value)) // ObjList*
#define AS_MAP(value) ((ObjMap*)AS_OBJ(value)) // ObjMap*
#define AS_MODULE(value) ((ObjModule*)AS_OBJ(value)) // ObjModule*
#define AS_NUM(value) (wrenValueToNum(value)) // double
#define AS_RANGE(v) ((ObjRange*)AS_OBJ(v)) // ObjRange*
#define AS_STRING(v) ((ObjString*)AS_OBJ(v)) // ObjString*
#define AS_CSTRING(v) (AS_STRING(v)->value) // const char*
// These macros promote a primitive C value to a full Wren Value. There are
// more defined below that are specific to the Nan tagged or other
// representation.
#define BOOL_VAL(boolean) ((boolean) ? TRUE_VAL : FALSE_VAL) // boolean
#define NUM_VAL(num) (wrenNumToValue(num)) // double
#define OBJ_VAL(obj) (wrenObjectToValue((Obj*)(obj))) // Any Obj___*
// These perform type tests on a Value, returning `true` if the Value is of the
// given type.
#define IS_BOOL(value) (wrenIsBool(value)) // Bool
#define IS_CLASS(value) (wrenIsObjType(value, OBJ_CLASS)) // ObjClass
#define IS_CLOSURE(value) (wrenIsObjType(value, OBJ_CLOSURE)) // ObjClosure
#define IS_FIBER(value) (wrenIsObjType(value, OBJ_FIBER)) // ObjFiber
#define IS_FN(value) (wrenIsObjType(value, OBJ_FN)) // ObjFn
#define IS_FOREIGN(value) (wrenIsObjType(value, OBJ_FOREIGN)) // ObjForeign
#define IS_INSTANCE(value) (wrenIsObjType(value, OBJ_INSTANCE)) // ObjInstance
#define IS_LIST(value) (wrenIsObjType(value, OBJ_LIST)) // ObjList
#define IS_RANGE(value) (wrenIsObjType(value, OBJ_RANGE)) // ObjRange
#define IS_STRING(value) (wrenIsObjType(value, OBJ_STRING)) // ObjString
// Creates a new string object from [text], which should be a bare C string
// literal. This determines the length of the string automatically at compile
// time based on the size of the character array (-1 for the terminating '\0').
#define CONST_STRING(vm, text) wrenNewStringLength((vm), (text), sizeof(text) - 1)
// Identifies which specific type a heap-allocated object is.
typedef enum {
OBJ_CLASS,
OBJ_CLOSURE,
OBJ_FIBER,
OBJ_FN,
OBJ_FOREIGN,
OBJ_INSTANCE,
OBJ_LIST,
OBJ_MAP,
OBJ_MODULE,
OBJ_RANGE,
OBJ_STRING,
OBJ_UPVALUE
} ObjType;
typedef struct sObjClass ObjClass;
// Base struct for all heap-allocated objects.
typedef struct sObj Obj;
struct sObj
{
ObjType type;
bool isDark;
// The object's class.
ObjClass* classObj;
// The next object in the linked list of all currently allocated objects.
struct sObj* next;
};
#if WREN_NAN_TAGGING
typedef uint64_t Value;
#else
typedef enum
{
VAL_FALSE,
VAL_NULL,
VAL_NUM,
VAL_TRUE,
VAL_UNDEFINED,
VAL_OBJ
} ValueType;
typedef struct
{
ValueType type;
union
{
double num;
Obj* obj;
} as;
} Value;
#endif
DECLARE_BUFFER(Value, Value);
// A heap-allocated string object.
struct sObjString
{
Obj obj;
// Number of bytes in the string, not including the null terminator.
uint32_t length;
// The hash value of the string's contents.
uint32_t hash;
// Inline array of the string's bytes followed by a null terminator.
char value[FLEXIBLE_ARRAY];
};
// The dynamically allocated data structure for a variable that has been used
// by a closure. Whenever a function accesses a variable declared in an
// enclosing function, it will get to it through this.
//
// An upvalue can be either "closed" or "open". An open upvalue points directly
// to a [Value] that is still stored on the fiber's stack because the local
// variable is still in scope in the function where it's declared.
//
// When that local variable goes out of scope, the upvalue pointing to it will
// be closed. When that happens, the value gets copied off the stack into the
// upvalue itself. That way, it can have a longer lifetime than the stack
// variable.
typedef struct sObjUpvalue
{
// The object header. Note that upvalues have this because they are garbage
// collected, but they are not first class Wren objects.
Obj obj;
// Pointer to the variable this upvalue is referencing.
Value* value;
// If the upvalue is closed (i.e. the local variable it was pointing too has
// been popped off the stack) then the closed-over value will be hoisted out
// of the stack into here. [value] will then be changed to point to this.
Value closed;
// Open upvalues are stored in a linked list by the fiber. This points to the
// next upvalue in that list.
struct sObjUpvalue* next;
} ObjUpvalue;
// The type of a primitive function.
//
// Primitives are similiar to foreign functions, but have more direct access to
// VM internals. It is passed the arguments in [args]. If it returns a value,
// it places it in `args[0]` and returns `true`. If it causes a runtime error
// or modifies the running fiber, it returns `false`.
typedef bool (*Primitive)(WrenVM* vm, Value* args);
// TODO: See if it's actually a perf improvement to have this in a separate
// struct instead of in ObjFn.
// Stores debugging information for a function used for things like stack
// traces.
typedef struct
{
// The name of the function. Heap allocated and owned by the FnDebug.
char* name;
// An array of line numbers. There is one element in this array for each
// bytecode in the function's bytecode array. The value of that element is
// the line in the source code that generated that instruction.
IntBuffer sourceLines;
} FnDebug;
// A loaded module and the top-level variables it defines.
//
// While this is an Obj and is managed by the GC, it never appears as a
// first-class object in Wren.
typedef struct
{
Obj obj;
// The currently defined top-level variables.
ValueBuffer variables;
// Symbol table for the names of all module variables. Indexes here directly
// correspond to entries in [variables].
SymbolTable variableNames;
// The name of the module.
ObjString* name;
} ObjModule;
// A function object. It wraps and owns the bytecode and other debug information
// for a callable chunk of code.
//
// Function objects are not passed around and invoked directly. Instead, they
// are always referenced by an [ObjClosure] which is the real first-class
// representation of a function. This isn't strictly necessary if they function
// has no upvalues, but lets the rest of the VM assume all called objects will
// be closures.
typedef struct
{
Obj obj;
ByteBuffer code;
ValueBuffer constants;
// The module where this function was defined.
ObjModule* module;
// The maximum number of stack slots this function may use.
int maxSlots;
// The number of upvalues this function closes over.
int numUpvalues;
// The number of parameters this function expects. Used to ensure that .call
// handles a mismatch between number of parameters and arguments. This will
// only be set for fns, and not ObjFns that represent methods or scripts.
int arity;
FnDebug* debug;
} ObjFn;
// An instance of a first-class function and the environment it has closed over.
// Unlike [ObjFn], this has captured the upvalues that the function accesses.
typedef struct
{
Obj obj;
// The function that this closure is an instance of.
ObjFn* fn;
// The upvalues this function has closed over.
ObjUpvalue* upvalues[FLEXIBLE_ARRAY];
} ObjClosure;
typedef struct
{
// Pointer to the current (really next-to-be-executed) instruction in the
// function's bytecode.
uint8_t* ip;
// The closure being executed.
ObjClosure* closure;
// Pointer to the first stack slot used by this call frame. This will contain
// the receiver, followed by the function's parameters, then local variables
// and temporaries.
Value* stackStart;
} CallFrame;
// Tracks how this fiber has been invoked, aside from the ways that can be
// detected from the state of other fields in the fiber.
typedef enum
{
// The fiber is being run from another fiber using a call to `try()`.
FIBER_TRY,
// The fiber was directly invoked by `runInterpreter()`. This means it's the
// initial fiber used by a call to `wrenCall()` or `wrenInterpret()`.
FIBER_ROOT,
// The fiber is invoked some other way. If [caller] is `NULL` then the fiber
// was invoked using `call()`. If [numFrames] is zero, then the fiber has
// finished running and is done. If [numFrames] is one and that frame's `ip`
// points to the first byte of code, the fiber has not been started yet.
FIBER_OTHER,
} FiberState;
typedef struct sObjFiber
{
Obj obj;
// The stack of value slots. This is used for holding local variables and
// temporaries while the fiber is executing. It heap-allocated and grown as
// needed.
Value* stack;
// A pointer to one past the top-most value on the stack.
Value* stackTop;
// The number of allocated slots in the stack array.
int stackCapacity;
// The stack of call frames. This is a dynamic array that grows as needed but
// never shrinks.
CallFrame* frames;
// The number of frames currently in use in [frames].
int numFrames;
// The number of [frames] allocated.
int frameCapacity;
// Pointer to the first node in the linked list of open upvalues that are
// pointing to values still on the stack. The head of the list will be the
// upvalue closest to the top of the stack, and then the list works downwards.
ObjUpvalue* openUpvalues;
// The fiber that ran this one. If this fiber is yielded, control will resume
// to this one. May be `NULL`.
struct sObjFiber* caller;
// If the fiber failed because of a runtime error, this will contain the
// error object. Otherwise, it will be null.
Value error;
FiberState state;
} ObjFiber;
typedef enum
{
// A primitive method implemented in C in the VM. Unlike foreign methods,
// this can directly manipulate the fiber's stack.
METHOD_PRIMITIVE,
// A externally-defined C method.
METHOD_FOREIGN,
// A normal user-defined method.
METHOD_BLOCK,
// No method for the given symbol.
METHOD_NONE
} MethodType;
typedef struct
{
MethodType type;
// The method function itself. The [type] determines which field of the union
// is used.
union
{
Primitive primitive;
WrenForeignMethodFn foreign;
ObjClosure* closure;
} as;
} Method;
DECLARE_BUFFER(Method, Method);
struct sObjClass
{
Obj obj;
ObjClass* superclass;
// The number of fields needed for an instance of this class, including all
// of its superclass fields.
int numFields;
// The table of methods that are defined in or inherited by this class.
// Methods are called by symbol, and the symbol directly maps to an index in
// this table. This makes method calls fast at the expense of empty cells in
// the list for methods the class doesn't support.
//
// You can think of it as a hash table that never has collisions but has a
// really low load factor. Since methods are pretty small (just a type and a
// pointer), this should be a worthwhile trade-off.
MethodBuffer methods;
// The name of the class.
ObjString* name;
};
typedef struct
{
Obj obj;
uint8_t data[FLEXIBLE_ARRAY];
} ObjForeign;
typedef struct
{
Obj obj;
Value fields[FLEXIBLE_ARRAY];
} ObjInstance;
typedef struct
{
Obj obj;
// The elements in the list.
ValueBuffer elements;
} ObjList;
typedef struct
{
// The entry's key, or UNDEFINED_VAL if the entry is not in use.
Value key;
// The value associated with the key. If the key is UNDEFINED_VAL, this will
// be false to indicate an open available entry or true to indicate a
// tombstone -- an entry that was previously in use but was then deleted.
Value value;
} MapEntry;
// A hash table mapping keys to values.
//
// We use something very simple: open addressing with linear probing. The hash
// table is an array of entries. Each entry is a key-value pair. If the key is
// the special UNDEFINED_VAL, it indicates no value is currently in that slot.
// Otherwise, it's a valid key, and the value is the value associated with it.
//
// When entries are added, the array is dynamically scaled by GROW_FACTOR to
// keep the number of filled slots under MAP_LOAD_PERCENT. Likewise, if the map
// gets empty enough, it will be resized to a smaller array. When this happens,
// all existing entries are rehashed and re-added to the new array.
//
// When an entry is removed, its slot is replaced with a "tombstone". This is an
// entry whose key is UNDEFINED_VAL and whose value is TRUE_VAL. When probing
// for a key, we will continue past tombstones, because the desired key may be
// found after them if the key that was removed was part of a prior collision.
// When the array gets resized, all tombstones are discarded.
typedef struct
{
Obj obj;
// The number of entries allocated.
uint32_t capacity;
// The number of entries in the map.
uint32_t count;
// Pointer to a contiguous array of [capacity] entries.
MapEntry* entries;
} ObjMap;
typedef struct
{
Obj obj;
// The beginning of the range.
double from;
// The end of the range. May be greater or less than [from].
double to;
// True if [to] is included in the range.
bool isInclusive;
} ObjRange;
// An IEEE 754 double-precision float is a 64-bit value with bits laid out like:
//
// 1 Sign bit
// | 11 Exponent bits
// | | 52 Mantissa (i.e. fraction) bits
// | | |
// S[Exponent-][Mantissa------------------------------------------]
//
// The details of how these are used to represent numbers aren't really
// relevant here as long we don't interfere with them. The important bit is NaN.
//
// An IEEE double can represent a few magical values like NaN ("not a number"),
// Infinity, and -Infinity. A NaN is any value where all exponent bits are set:
//
// v--NaN bits
// -11111111111----------------------------------------------------
//
// Here, "-" means "doesn't matter". Any bit sequence that matches the above is
// a NaN. With all of those "-", it obvious there are a *lot* of different
// bit patterns that all mean the same thing. NaN tagging takes advantage of
// this. We'll use those available bit patterns to represent things other than
// numbers without giving up any valid numeric values.
//
// NaN values come in two flavors: "signalling" and "quiet". The former are
// intended to halt execution, while the latter just flow through arithmetic
// operations silently. We want the latter. Quiet NaNs are indicated by setting
// the highest mantissa bit:
//
// v--Highest mantissa bit
// -[NaN ]1---------------------------------------------------
//
// If all of the NaN bits are set, it's not a number. Otherwise, it is.
// That leaves all of the remaining bits as available for us to play with. We
// stuff a few different kinds of things here: special singleton values like
// "true", "false", and "null", and pointers to objects allocated on the heap.
// We'll use the sign bit to distinguish singleton values from pointers. If
// it's set, it's a pointer.
//
// v--Pointer or singleton?
// S[NaN ]1---------------------------------------------------
//
// For singleton values, we just enumerate the different values. We'll use the
// low bits of the mantissa for that, and only need a few:
//
// 3 Type bits--v
// 0[NaN ]1------------------------------------------------[T]
//
// For pointers, we are left with 51 bits of mantissa to store an address.
// That's more than enough room for a 32-bit address. Even 64-bit machines
// only actually use 48 bits for addresses, so we've got plenty. We just stuff
// the address right into the mantissa.
//
// Ta-da, double precision numbers, pointers, and a bunch of singleton values,
// all stuffed into a single 64-bit sequence. Even better, we don't have to
// do any masking or work to extract number values: they are unmodified. This
// means math on numbers is fast.
#if WREN_NAN_TAGGING
// A mask that selects the sign bit.
#define SIGN_BIT ((uint64_t)1 << 63)
// The bits that must be set to indicate a quiet NaN.
#define QNAN ((uint64_t)0x7ffc000000000000)
// If the NaN bits are set, it's not a number.
#define IS_NUM(value) (((value) & QNAN) != QNAN)
// An object pointer is a NaN with a set sign bit.
#define IS_OBJ(value) (((value) & (QNAN | SIGN_BIT)) == (QNAN | SIGN_BIT))
#define IS_FALSE(value) ((value) == FALSE_VAL)
#define IS_NULL(value) ((value) == NULL_VAL)
#define IS_UNDEFINED(value) ((value) == UNDEFINED_VAL)
// Masks out the tag bits used to identify the singleton value.
#define MASK_TAG (7)
// Tag values for the different singleton values.
#define TAG_NAN (0)
#define TAG_NULL (1)
#define TAG_FALSE (2)
#define TAG_TRUE (3)
#define TAG_UNDEFINED (4)
#define TAG_UNUSED2 (5)
#define TAG_UNUSED3 (6)
#define TAG_UNUSED4 (7)
// Value -> 0 or 1.
#define AS_BOOL(value) ((value) == TRUE_VAL)
// Value -> Obj*.
#define AS_OBJ(value) ((Obj*)(uintptr_t)((value) & ~(SIGN_BIT | QNAN)))
// Singleton values.
#define NULL_VAL ((Value)(uint64_t)(QNAN | TAG_NULL))
#define FALSE_VAL ((Value)(uint64_t)(QNAN | TAG_FALSE))
#define TRUE_VAL ((Value)(uint64_t)(QNAN | TAG_TRUE))
#define UNDEFINED_VAL ((Value)(uint64_t)(QNAN | TAG_UNDEFINED))
// Gets the singleton type tag for a Value (which must be a singleton).
#define GET_TAG(value) ((int)((value) & MASK_TAG))
#else
// Value -> 0 or 1.
#define AS_BOOL(value) ((value).type == VAL_TRUE)
// Value -> Obj*.
#define AS_OBJ(v) ((v).as.obj)
// Determines if [value] is a garbage-collected object or not.
#define IS_OBJ(value) ((value).type == VAL_OBJ)
#define IS_FALSE(value) ((value).type == VAL_FALSE)
#define IS_NULL(value) ((value).type == VAL_NULL)
#define IS_NUM(value) ((value).type == VAL_NUM)
#define IS_UNDEFINED(value) ((value).type == VAL_UNDEFINED)
// Singleton values.
#define FALSE_VAL ((Value){ VAL_FALSE, { 0 } })
#define NULL_VAL ((Value){ VAL_NULL, { 0 } })
#define TRUE_VAL ((Value){ VAL_TRUE, { 0 } })
#define UNDEFINED_VAL ((Value){ VAL_UNDEFINED, { 0 } })
#endif
// A union to let us reinterpret a double as raw bits and back.
typedef union
{
uint64_t bits64;
uint32_t bits32[2];
double num;
} DoubleBits;
// Creates a new "raw" class. It has no metaclass or superclass whatsoever.
// This is only used for bootstrapping the initial Object and Class classes,
// which are a little special.
ObjClass* wrenNewSingleClass(WrenVM* vm, int numFields, ObjString* name);
// Makes [superclass] the superclass of [subclass], and causes subclass to
// inherit its methods. This should be called before any methods are defined
// on subclass.
void wrenBindSuperclass(WrenVM* vm, ObjClass* subclass, ObjClass* superclass);
// Creates a new class object as well as its associated metaclass.
ObjClass* wrenNewClass(WrenVM* vm, ObjClass* superclass, int numFields,
ObjString* name);
void wrenBindMethod(WrenVM* vm, ObjClass* classObj, int symbol, Method method);
// Creates a new closure object that invokes [fn]. Allocates room for its
// upvalues, but assumes outside code will populate it.
ObjClosure* wrenNewClosure(WrenVM* vm, ObjFn* fn);
// Creates a new fiber object that will invoke [closure].
ObjFiber* wrenNewFiber(WrenVM* vm, ObjClosure* closure);
// Adds a new [CallFrame] to [fiber] invoking [closure] whose stack starts at
// [stackStart].
static inline void wrenAppendCallFrame(WrenVM* vm, ObjFiber* fiber,
ObjClosure* closure, Value* stackStart)
{
// The caller should have ensured we already have enough capacity.
ASSERT(fiber->frameCapacity > fiber->numFrames, "No memory for call frame.");
CallFrame* frame = &fiber->frames[fiber->numFrames++];
frame->stackStart = stackStart;
frame->closure = closure;
frame->ip = closure->fn->code.data;
}
// Ensures [fiber]'s stack has at least [needed] slots.
void wrenEnsureStack(WrenVM* vm, ObjFiber* fiber, int needed);
static inline bool wrenHasError(const ObjFiber* fiber)
{
return !IS_NULL(fiber->error);
}
ObjForeign* wrenNewForeign(WrenVM* vm, ObjClass* classObj, size_t size);
// Creates a new empty function. Before being used, it must have code,
// constants, etc. added to it.
ObjFn* wrenNewFunction(WrenVM* vm, ObjModule* module, int maxSlots);
void wrenFunctionBindName(WrenVM* vm, ObjFn* fn, const char* name, int length);
// Creates a new instance of the given [classObj].
Value wrenNewInstance(WrenVM* vm, ObjClass* classObj);
// Creates a new list with [numElements] elements (which are left
// uninitialized.)
ObjList* wrenNewList(WrenVM* vm, uint32_t numElements);
// Inserts [value] in [list] at [index], shifting down the other elements.
void wrenListInsert(WrenVM* vm, ObjList* list, Value value, uint32_t index);
// Removes and returns the item at [index] from [list].
Value wrenListRemoveAt(WrenVM* vm, ObjList* list, uint32_t index);
// Creates a new empty map.
ObjMap* wrenNewMap(WrenVM* vm);
// Looks up [key] in [map]. If found, returns the value. Otherwise, returns
// `UNDEFINED_VAL`.
Value wrenMapGet(ObjMap* map, Value key);
// Associates [key] with [value] in [map].
void wrenMapSet(WrenVM* vm, ObjMap* map, Value key, Value value);
void wrenMapClear(WrenVM* vm, ObjMap* map);
// Removes [key] from [map], if present. Returns the value for the key if found
// or `NULL_VAL` otherwise.
Value wrenMapRemoveKey(WrenVM* vm, ObjMap* map, Value key);
// Creates a new module.
ObjModule* wrenNewModule(WrenVM* vm, ObjString* name);
// Creates a new range from [from] to [to].
Value wrenNewRange(WrenVM* vm, double from, double to, bool isInclusive);
// Creates a new string object and copies [text] into it.
//
// [text] must be non-NULL.
Value wrenNewString(WrenVM* vm, const char* text);
// Creates a new string object of [length] and copies [text] into it.
//
// [text] may be NULL if [length] is zero.
Value wrenNewStringLength(WrenVM* vm, const char* text, size_t length);
// Creates a new string object by taking a range of characters from [source].
// The range starts at [start], contains [count] bytes, and increments by
// [step].
Value wrenNewStringFromRange(WrenVM* vm, ObjString* source, int start,
uint32_t count, int step);
// Produces a string representation of [value].
Value wrenNumToString(WrenVM* vm, double value);
// Creates a new formatted string from [format] and any additional arguments
// used in the format string.
//
// This is a very restricted flavor of formatting, intended only for internal
// use by the VM. Two formatting characters are supported, each of which reads
// the next argument as a certain type:
//
// $ - A C string.
// @ - A Wren string object.
Value wrenStringFormat(WrenVM* vm, const char* format, ...);
// Creates a new string containing the UTF-8 encoding of [value].
Value wrenStringFromCodePoint(WrenVM* vm, int value);
// Creates a new string from the integer representation of a byte
Value wrenStringFromByte(WrenVM* vm, uint8_t value);
// Creates a new string containing the code point in [string] starting at byte
// [index]. If [index] points into the middle of a UTF-8 sequence, returns an
// empty string.
Value wrenStringCodePointAt(WrenVM* vm, ObjString* string, uint32_t index);
// Search for the first occurence of [needle] within [haystack] and returns its
// zero-based offset. Returns `UINT32_MAX` if [haystack] does not contain
// [needle].
uint32_t wrenStringFind(ObjString* haystack, ObjString* needle,
uint32_t startIndex);
// Returns true if [a] and [b] represent the same string.
static inline bool wrenStringEqualsCString(const ObjString* a,
const char* b, size_t length)
{
return a->length == length && memcmp(a->value, b, length) == 0;
}
// Creates a new open upvalue pointing to [value] on the stack.
ObjUpvalue* wrenNewUpvalue(WrenVM* vm, Value* value);
// Mark [obj] as reachable and still in use. This should only be called
// during the sweep phase of a garbage collection.
void wrenGrayObj(WrenVM* vm, Obj* obj);
// Mark [value] as reachable and still in use. This should only be called
// during the sweep phase of a garbage collection.
void wrenGrayValue(WrenVM* vm, Value value);
// Mark the values in [buffer] as reachable and still in use. This should only
// be called during the sweep phase of a garbage collection.
void wrenGrayBuffer(WrenVM* vm, ValueBuffer* buffer);
// Processes every object in the gray stack until all reachable objects have
// been marked. After that, all objects are either white (freeable) or black
// (in use and fully traversed).
void wrenBlackenObjects(WrenVM* vm);
// Releases all memory owned by [obj], including [obj] itself.
void wrenFreeObj(WrenVM* vm, Obj* obj);
// Returns the class of [value].
//
// Unlike wrenGetClassInline in wren_vm.h, this is not inlined. Inlining helps
// performance (significantly) in some cases, but degrades it in others. The
// ones used by the implementation were chosen to give the best results in the
// benchmarks.
ObjClass* wrenGetClass(WrenVM* vm, Value value);
// Returns true if [a] and [b] are strictly the same value. This is identity
// for object values, and value equality for unboxed values.
static inline bool wrenValuesSame(Value a, Value b)
{
#if WREN_NAN_TAGGING
// Value types have unique bit representations and we compare object types
// by identity (i.e. pointer), so all we need to do is compare the bits.
return a == b;
#else
if (a.type != b.type) return false;
if (a.type == VAL_NUM) return a.as.num == b.as.num;
return a.as.obj == b.as.obj;
#endif
}
// Returns true if [a] and [b] are equivalent. Immutable values (null, bools,
// numbers, ranges, and strings) are equal if they have the same data. All
// other values are equal if they are identical objects.
bool wrenValuesEqual(Value a, Value b);
// Returns true if [value] is a bool. Do not call this directly, instead use
// [IS_BOOL].
static inline bool wrenIsBool(Value value)
{
#if WREN_NAN_TAGGING
return value == TRUE_VAL || value == FALSE_VAL;
#else
return value.type == VAL_FALSE || value.type == VAL_TRUE;
#endif
}
// Returns true if [value] is an object of type [type]. Do not call this
// directly, instead use the [IS___] macro for the type in question.
static inline bool wrenIsObjType(Value value, ObjType type)
{
return IS_OBJ(value) && AS_OBJ(value)->type == type;
}
// Converts the raw object pointer [obj] to a [Value].
static inline Value wrenObjectToValue(Obj* obj)
{
#if WREN_NAN_TAGGING
// The triple casting is necessary here to satisfy some compilers:
// 1. (uintptr_t) Convert the pointer to a number of the right size.
// 2. (uint64_t) Pad it up to 64 bits in 32-bit builds.
// 3. Or in the bits to make a tagged Nan.
// 4. Cast to a typedef'd value.
return (Value)(SIGN_BIT | QNAN | (uint64_t)(uintptr_t)(obj));
#else
Value value;
value.type = VAL_OBJ;
value.as.obj = obj;
return value;
#endif
}
// Interprets [value] as a [double].
static inline double wrenValueToNum(Value value)
{
#if WREN_NAN_TAGGING
DoubleBits data;
data.bits64 = value;
return data.num;
#else
return value.as.num;
#endif
}
// Converts [num] to a [Value].
static inline Value wrenNumToValue(double num)
{
#if WREN_NAN_TAGGING
DoubleBits data;
data.num = num;
return data.bits64;
#else
Value value;
value.type = VAL_NUM;
value.as.num = num;
return value;
#endif
}
#endif

1790
deps/wren/src/vm/wren_vm.c vendored Normal file

File diff suppressed because it is too large Load Diff

239
deps/wren/src/vm/wren_vm.h vendored Normal file
View File

@ -0,0 +1,239 @@
#ifndef wren_vm_h
#define wren_vm_h
#include "wren_common.h"
#include "wren_compiler.h"
#include "wren_value.h"
#include "wren_utils.h"
// The maximum number of temporary objects that can be made visible to the GC
// at one time.
#define WREN_MAX_TEMP_ROOTS 5
typedef enum
{
#define OPCODE(name, _) CODE_##name,
#include "wren_opcodes.h"
#undef OPCODE
} Code;
// A handle to a value, basically just a linked list of extra GC roots.
//
// Note that even non-heap-allocated values can be stored here.
struct WrenHandle
{
Value value;
WrenHandle* prev;
WrenHandle* next;
};
struct WrenVM
{
ObjClass* boolClass;
ObjClass* classClass;
ObjClass* fiberClass;
ObjClass* fnClass;
ObjClass* listClass;
ObjClass* mapClass;
ObjClass* nullClass;
ObjClass* numClass;
ObjClass* objectClass;
ObjClass* rangeClass;
ObjClass* stringClass;
// The fiber that is currently running.
ObjFiber* fiber;
// The loaded modules. Each key is an ObjString (except for the main module,
// whose key is null) for the module's name and the value is the ObjModule
// for the module.
ObjMap* modules;
// The most recently imported module. More specifically, the module whose
// code has most recently finished executing.
//
// Not treated like a GC root since the module is already in [modules].
ObjModule* lastModule;
// Memory management data:
// The number of bytes that are known to be currently allocated. Includes all
// memory that was proven live after the last GC, as well as any new bytes
// that were allocated since then. Does *not* include bytes for objects that
// were freed since the last GC.
size_t bytesAllocated;
// The number of total allocated bytes that will trigger the next GC.
size_t nextGC;
// The first object in the linked list of all currently allocated objects.
Obj* first;
// The "gray" set for the garbage collector. This is the stack of unprocessed
// objects while a garbage collection pass is in process.
Obj** gray;
int grayCount;
int grayCapacity;
// The list of temporary roots. This is for temporary or new objects that are
// not otherwise reachable but should not be collected.
//
// They are organized as a stack of pointers stored in this array. This
// implies that temporary roots need to have stack semantics: only the most
// recently pushed object can be released.
Obj* tempRoots[WREN_MAX_TEMP_ROOTS];
int numTempRoots;
// Pointer to the first node in the linked list of active handles or NULL if
// there are none.
WrenHandle* handles;
// Pointer to the bottom of the range of stack slots available for use from
// the C API. During a foreign method, this will be in the stack of the fiber
// that is executing a method.
//
// If not in a foreign method, this is initially NULL. If the user requests
// slots by calling wrenEnsureSlots(), a stack is created and this is
// initialized.
Value* apiStack;
WrenConfiguration config;
// Compiler and debugger data:
// The compiler that is currently compiling code. This is used so that heap
// allocated objects used by the compiler can be found if a GC is kicked off
// in the middle of a compile.
Compiler* compiler;
// There is a single global symbol table for all method names on all classes.
// Method calls are dispatched directly by index in this table.
SymbolTable methodNames;
};
// A generic allocation function that handles all explicit memory management.
// It's used like so:
//
// - To allocate new memory, [memory] is NULL and [oldSize] is zero. It should
// return the allocated memory or NULL on failure.
//
// - To attempt to grow an existing allocation, [memory] is the memory,
// [oldSize] is its previous size, and [newSize] is the desired size.
// It should return [memory] if it was able to grow it in place, or a new
// pointer if it had to move it.
//
// - To shrink memory, [memory], [oldSize], and [newSize] are the same as above
// but it will always return [memory].
//
// - To free memory, [memory] will be the memory to free and [newSize] and
// [oldSize] will be zero. It should return NULL.
void* wrenReallocate(WrenVM* vm, void* memory, size_t oldSize, size_t newSize);
// Invoke the finalizer for the foreign object referenced by [foreign].
void wrenFinalizeForeign(WrenVM* vm, ObjForeign* foreign);
// Creates a new [WrenHandle] for [value].
WrenHandle* wrenMakeHandle(WrenVM* vm, Value value);
// Compile [source] in the context of [module] and wrap in a fiber that can
// execute it.
//
// Returns NULL if a compile error occurred.
ObjClosure* wrenCompileSource(WrenVM* vm, const char* module,
const char* source, bool isExpression,
bool printErrors);
// Looks up a variable from a previously-loaded module.
//
// Aborts the current fiber if the module or variable could not be found.
Value wrenGetModuleVariable(WrenVM* vm, Value moduleName, Value variableName);
// Returns the value of the module-level variable named [name] in the main
// module.
Value wrenFindVariable(WrenVM* vm, ObjModule* module, const char* name);
// Adds a new implicitly declared top-level variable named [name] to [module]
// based on a use site occurring on [line].
//
// Does not check to see if a variable with that name is already declared or
// defined. Returns the symbol for the new variable or -2 if there are too many
// variables defined.
int wrenDeclareVariable(WrenVM* vm, ObjModule* module, const char* name,
size_t length, int line);
// Adds a new top-level variable named [name] to [module], and optionally
// populates line with the line of the implicit first use (line can be NULL).
//
// Returns the symbol for the new variable, -1 if a variable with the given name
// is already defined, or -2 if there are too many variables defined.
// Returns -3 if this is a top-level lowercase variable (localname) that was
// used before being defined.
int wrenDefineVariable(WrenVM* vm, ObjModule* module, const char* name,
size_t length, Value value, int* line);
// Pushes [closure] onto [fiber]'s callstack to invoke it. Expects [numArgs]
// arguments (including the receiver) to be on the top of the stack already.
static inline void wrenCallFunction(WrenVM* vm, ObjFiber* fiber,
ObjClosure* closure, int numArgs)
{
// Grow the call frame array if needed.
if (fiber->numFrames + 1 > fiber->frameCapacity)
{
int max = fiber->frameCapacity * 2;
fiber->frames = (CallFrame*)wrenReallocate(vm, fiber->frames,
sizeof(CallFrame) * fiber->frameCapacity, sizeof(CallFrame) * max);
fiber->frameCapacity = max;
}
// Grow the stack if needed.
int stackSize = (int)(fiber->stackTop - fiber->stack);
int needed = stackSize + closure->fn->maxSlots;
wrenEnsureStack(vm, fiber, needed);
wrenAppendCallFrame(vm, fiber, closure, fiber->stackTop - numArgs);
}
// Marks [obj] as a GC root so that it doesn't get collected.
void wrenPushRoot(WrenVM* vm, Obj* obj);
// Removes the most recently pushed temporary root.
void wrenPopRoot(WrenVM* vm);
// Returns the class of [value].
//
// Defined here instead of in wren_value.h because it's critical that this be
// inlined. That means it must be defined in the header, but the wren_value.h
// header doesn't have a full definitely of WrenVM yet.
static inline ObjClass* wrenGetClassInline(WrenVM* vm, Value value)
{
if (IS_NUM(value)) return vm->numClass;
if (IS_OBJ(value)) return AS_OBJ(value)->classObj;
#if WREN_NAN_TAGGING
switch (GET_TAG(value))
{
case TAG_FALSE: return vm->boolClass; break;
case TAG_NAN: return vm->numClass; break;
case TAG_NULL: return vm->nullClass; break;
case TAG_TRUE: return vm->boolClass; break;
case TAG_UNDEFINED: UNREACHABLE();
}
#else
switch (value.type)
{
case VAL_FALSE: return vm->boolClass;
case VAL_NULL: return vm->nullClass;
case VAL_NUM: return vm->numClass;
case VAL_TRUE: return vm->boolClass;
case VAL_OBJ: return AS_OBJ(value)->classObj;
case VAL_UNDEFINED: UNREACHABLE();
}
#endif
UNREACHABLE();
return NULL;
}
#endif