Compare commits
2 Commits
8c242d1ff9
...
7ae80ab600
| Author | SHA1 | Date | |
|---|---|---|---|
| 7ae80ab600 | |||
| 061d71ac1e |
@ -7,3 +7,5 @@ aiohttp==3.9.1
|
||||
feedparser==6.0.10
|
||||
websockets==12.0
|
||||
trafilatura==1.6.2
|
||||
vaderSentiment
|
||||
|
||||
|
||||
10
routers.py
10
routers.py
@ -4,6 +4,7 @@ from fastapi.templating import Jinja2Templates
|
||||
import dataset
|
||||
import json
|
||||
import aiohttp
|
||||
import sentiment
|
||||
import feedparser
|
||||
import asyncio
|
||||
from datetime import datetime
|
||||
@ -356,15 +357,17 @@ async def websocket_sync(websocket: WebSocket):
|
||||
'last_synchronized': datetime.now().isoformat()
|
||||
}
|
||||
|
||||
|
||||
existing = articles_table.find_one(guid=article_data['guid'])
|
||||
if not existing:
|
||||
new_articles.append(article_data)
|
||||
articles_count += 1
|
||||
|
||||
article_data['sentiment'] = json.dumps(sentiment.analyze(entry.get('description', '') or entry.get('summary', '')))
|
||||
articles_table.upsert(article_data, ['guid'])
|
||||
|
||||
# Index the article to ChromaDB
|
||||
doc_content = f"{article_data.get('title', '')}\n{article_data.get('description', '')}"
|
||||
|
||||
metadata = {key: str(value) for key, value in article_data.items() if key != 'content'} # Exclude large content from metadata
|
||||
chroma_collection.upsert(
|
||||
documents=[doc_content],
|
||||
@ -490,8 +493,9 @@ async def search_articles(
|
||||
for i, doc_id in enumerate(results['ids'][0]):
|
||||
res = results['metadatas'][0][i]
|
||||
res['distance'] = results['distances'][0][i]
|
||||
res['sentiment'] = sentiment.analyze(res.get('description', '') or res.get('content', '') or res.get('title', ''))
|
||||
formatted_results.append(res)
|
||||
|
||||
|
||||
return JSONResponse(content={"results": formatted_results})
|
||||
|
||||
else:
|
||||
@ -565,6 +569,8 @@ async def newspaper_latest(request: Request):
|
||||
for article in articles:
|
||||
for key, value in article.items():
|
||||
article[key] = str(value).strip().replace(' ', '')
|
||||
|
||||
article['sentiment'] = sentiment.analyze(article.get('description', '') or article.get('content', '') or res.get('title', ''))
|
||||
return templates.TemplateResponse("newspaper_view.html", {
|
||||
"request": request,
|
||||
"newspaper": first_newspaper,
|
||||
|
||||
35
sentiment.py
Normal file
35
sentiment.py
Normal file
@ -0,0 +1,35 @@
|
||||
import json
|
||||
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
||||
|
||||
def analyze_sentiment_vader(text, analyzer):
|
||||
"""
|
||||
Analyzes text using VADER and returns a dictionary with the results.
|
||||
|
||||
Args:
|
||||
text (str): The text content to analyze.
|
||||
analyzer (SentimentIntensityAnalyzer): An instantiated VADER analyzer.
|
||||
|
||||
Returns:
|
||||
dict: A dictionary containing the sentiment classification, compound score,
|
||||
and detailed scores (positive, neutral, negative).
|
||||
"""
|
||||
scores = analyzer.polarity_scores(text)
|
||||
compound_score = scores['compound']
|
||||
|
||||
if compound_score >= 0.05:
|
||||
sentiment = 'Positive'
|
||||
elif compound_score <= -0.05:
|
||||
sentiment = 'Negative'
|
||||
else:
|
||||
sentiment = 'Neutral'
|
||||
|
||||
return {
|
||||
'sentiment': sentiment,
|
||||
'score': compound_score,
|
||||
'details': scores
|
||||
}
|
||||
|
||||
vader_analyzer = SentimentIntensityAnalyzer()
|
||||
|
||||
def analyze(content):
|
||||
return analyze_sentiment_vader(content, vader_analyzer)
|
||||
@ -164,6 +164,7 @@
|
||||
<h2 class="article-title">
|
||||
<a href="{{ article.link }}" target="_blank">{{ article.title }}</a>
|
||||
</h2>
|
||||
<input type="hidden" name="sentiment" value="{{ article.sentiment }}">
|
||||
<div class="article-meta">
|
||||
<span class="article-source">{{ article.feed_name }}</span>
|
||||
{% if article.author %}
|
||||
|
||||
Loading…
Reference in New Issue
Block a user