#define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include // --- Test Configuration --- #define HOST "127.0.0.1" #define PORT 8080 #define NUM_SUBSCRIBERS 1000 #define NUM_PUBLISHERS 10 #define TOTAL_CLIENTS (NUM_SUBSCRIBERS + NUM_PUBLISHERS) #define TEST_DURATION_S 15 #define MESSAGES_PER_SECOND_PER_PUBLISHER 100 // --- Internal Configuration --- #define MAX_EVENTS TOTAL_CLIENTS #define RW_BUFFER_SIZE 8192 #define MAX_LATENCIES 20000000 // Pre-allocate for ~1.3M messages/sec // --- WebSocket Constants --- #define WEBSOCKET_KEY_MAGIC "258EAFA5-E914-47DA-95CA-C5AB0DC85B11" // --- Helper Enums --- typedef enum { CLIENT_SUBSCRIBER, CLIENT_PUBLISHER } ClientType; typedef enum { STATE_CONNECTING, STATE_HANDSHAKE_SEND, STATE_HANDSHAKE_RECV, STATE_SUBSCRIBING, STATE_RUNNING, STATE_CLOSED } ClientState; // --- Client State Structure --- typedef struct { int fd; ClientType type; ClientState state; char read_buf[RW_BUFFER_SIZE]; size_t read_len; char write_buf[RW_BUFFER_SIZE]; size_t write_len; size_t write_pos; double next_send_time; } Client; // --- Global State & Metrics --- double* latencies; size_t latencies_count = 0; uint64_t messages_sent = 0; uint64_t messages_received = 0; int subscriber_setup_count = 0; int all_subscribed = 0; int epoll_fd; const char* CHANNELS[] = {"news", "sports", "tech", "finance", "weather"}; const int NUM_CHANNELS = sizeof(CHANNELS) / sizeof(CHANNELS[0]); // ============================================================================= // START: Clean SHA-1 and Base64 Implementations // ============================================================================= // --- SHA-1 Implementation --- typedef struct { uint32_t state[5]; uint32_t count[2]; unsigned char buffer[64]; } SHA1_CTX; #define SHA1_ROTLEFT(n,c) (((n) << (c)) | ((n) >> (32 - (c)))) void SHA1_Transform(uint32_t state[5], const unsigned char buffer[64]) { uint32_t a, b, c, d, e; uint32_t block[16]; memcpy(block, buffer, 64); for(int i = 0; i < 16; i++) { uint8_t *p = (uint8_t*)&block[i]; block[i] = (p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]; } a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; uint32_t W[80]; for (int t = 0; t < 80; t++) { if (t < 16) { W[t] = block[t]; } else { W[t] = SHA1_ROTLEFT(W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16], 1); } uint32_t temp = SHA1_ROTLEFT(a, 5) + e + W[t]; if (t < 20) temp += ((b & c) | (~b & d)) + 0x5A827999; else if (t < 40) temp += (b ^ c ^ d) + 0x6ED9EBA1; else if (t < 60) temp += ((b & c) | (b & d) | (c & d)) + 0x8F1BBCDC; else temp += (b ^ c ^ d) + 0xCA62C1D6; e = d; d = c; c = SHA1_ROTLEFT(b, 30); b = a; a = temp; } state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; } void SHA1_Init(SHA1_CTX* context) { context->state[0] = 0x67452301; context->state[1] = 0xEFCDAB89; context->state[2] = 0x98BADCFE; context->state[3] = 0x10325476; context->state[4] = 0xC3D2E1F0; context->count[0] = context->count[1] = 0; } void SHA1_Update(SHA1_CTX* context, const unsigned char* data, uint32_t len) { uint32_t i, j; j = context->count[0]; if ((context->count[0] += len << 3) < j) context->count[1]++; context->count[1] += (len >> 29); j = (j >> 3) & 63; if ((j + len) > 63) { memcpy(&context->buffer[j], data, (i = 64 - j)); SHA1_Transform(context->state, context->buffer); for (; i + 63 < len; i += 64) { SHA1_Transform(context->state, &data[i]); } j = 0; } else { i = 0; } memcpy(&context->buffer[j], &data[i], len - i); } void SHA1_Final(unsigned char digest[20], SHA1_CTX* context) { uint32_t i; unsigned char finalcount[8]; for (i = 0; i < 8; i++) { finalcount[i] = (unsigned char)((context->count[(i >= 4 ? 0 : 1)] >> ((3 - (i & 3)) * 8)) & 255); } SHA1_Update(context, (unsigned char*)"\x80", 1); while ((context->count[0] & 504) != 448) { SHA1_Update(context, (unsigned char*)"\0", 1); } SHA1_Update(context, finalcount, 8); for (i = 0; i < 20; i++) { digest[i] = (unsigned char)((context->state[i >> 2] >> ((3 - (i & 3)) * 8)) & 255); } } // --- Base64 Implementation --- char* base64_encode(const unsigned char *data, size_t input_length) { const char b64_table[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; size_t output_length = 4 * ((input_length + 2) / 3); char *encoded_data = malloc(output_length + 1); if (encoded_data == NULL) return NULL; for (size_t i = 0, j = 0; i < input_length;) { uint32_t octet_a = i < input_length ? data[i++] : 0; uint32_t octet_b = i < input_length ? data[i++] : 0; uint32_t octet_c = i < input_length ? data[i++] : 0; uint32_t triple = (octet_a << 16) + (octet_b << 8) + octet_c; encoded_data[j++] = b64_table[(triple >> 18) & 0x3F]; encoded_data[j++] = b64_table[(triple >> 12) & 0x3F]; encoded_data[j++] = b64_table[(triple >> 6) & 0x3F]; encoded_data[j++] = b64_table[triple & 0x3F]; } for (size_t i = 0; i < (3 - input_length % 3) % 3; i++) { encoded_data[output_length - 1 - i] = '='; } encoded_data[output_length] = '\0'; return encoded_data; } // ============================================================================= // END: Clean SHA-1 and Base64 Implementations // ============================================================================= // --- Utility Functions --- double get_time_double() { struct timespec ts; clock_gettime(CLOCK_REALTIME, &ts); return ts.tv_sec + ts.tv_nsec / 1e9; } void epoll_ctl_mod(int fd, uint32_t events, void* ptr) { struct epoll_event ev; ev.events = events; ev.data.ptr = ptr; epoll_ctl(epoll_fd, EPOLL_CTL_MOD, fd, &ev); } void close_client(Client* client) { if (client->state != STATE_CLOSED) { epoll_ctl(epoll_fd, EPOLL_CTL_DEL, client->fd, NULL); close(client->fd); client->state = STATE_CLOSED; } } // --- WebSocket Core Functions --- size_t create_ws_frame(const char* payload, size_t payload_len, char* out_buffer) { size_t frame_len = 2 + payload_len + 4; // Header + Mask + Payload if (payload_len > 125) frame_len += 2; // For 16-bit length out_buffer[0] = 0x81; // FIN + Text Frame if (payload_len <= 125) { out_buffer[1] = 0x80 | payload_len; } else { out_buffer[1] = 0x80 | 126; *(uint16_t*)(out_buffer + 2) = htons(payload_len); } size_t header_len = (payload_len <= 125) ? 2 : 4; uint32_t mask = rand(); *(uint32_t*)(out_buffer + header_len) = mask; uint8_t* mask_bytes = (uint8_t*)&mask; for(size_t i = 0; i < payload_len; ++i) { out_buffer[header_len + 4 + i] = payload[i] ^ mask_bytes[i % 4]; } return header_len + 4 + payload_len; } void send_handshake(Client* client) { unsigned char key_bytes[16]; for (int i = 0; i < 16; i++) key_bytes[i] = rand() % 256; char* b64_key = base64_encode(key_bytes, 16); client->write_len = snprintf(client->write_buf, RW_BUFFER_SIZE, "GET / HTTP/1.1\r\n" "Host: %s:%d\r\n" "Upgrade: websocket\r\n" "Connection: Upgrade\r\n" "Sec-WebSocket-Key: %s\r\n" "Sec-WebSocket-Version: 13\r\n\r\n", HOST, PORT, b64_key); client->state = STATE_HANDSHAKE_SEND; epoll_ctl_mod(client->fd, EPOLLIN | EPOLLOUT | EPOLLET, client); free(b64_key); } // --- Event Handlers --- void handle_write(Client* client) { ssize_t sent = send(client->fd, client->write_buf + client->write_pos, client->write_len - client->write_pos, 0); if (sent < 0) { if (errno != EAGAIN && errno != EWOULDBLOCK) close_client(client); return; } client->write_pos += sent; if (client->write_pos >= client->write_len) { client->write_pos = 0; client->write_len = 0; epoll_ctl_mod(client->fd, EPOLLIN | EPOLLET, client); // Done writing, wait for reads if (client->state == STATE_HANDSHAKE_SEND) { client->state = STATE_HANDSHAKE_RECV; } else if (client->state == STATE_SUBSCRIBING) { client->state = STATE_RUNNING; subscriber_setup_count++; if (subscriber_setup_count == NUM_SUBSCRIBERS) { printf("✅ All subscribers are connected and subscribed. Starting publishers...\n"); all_subscribed = 1; } } } } void handle_read(Client* client) { ssize_t n = read(client->fd, client->read_buf + client->read_len, RW_BUFFER_SIZE - client->read_len); if (n <= 0) { if (n < 0 && errno != EAGAIN && errno != EWOULDBLOCK) perror("read error"); close_client(client); return; } client->read_len += n; if (client->state == STATE_HANDSHAKE_RECV) { if (strstr(client->read_buf, "\r\n\r\n")) { if (strstr(client->read_buf, " 101 ") == NULL) { fprintf(stderr, "Handshake failed for fd %d\n", client->fd); close_client(client); return; } client->read_len = 0; // Handshake complete, clear buffer if (client->type == CLIENT_SUBSCRIBER) { const char* channel = CHANNELS[rand() % NUM_CHANNELS]; char sub_msg[128]; int msg_len = snprintf(sub_msg, sizeof(sub_msg), "sub %s", channel); client->write_len = create_ws_frame(sub_msg, msg_len, client->write_buf); client->state = STATE_SUBSCRIBING; epoll_ctl_mod(client->fd, EPOLLIN | EPOLLOUT | EPOLLET, client); } else { // Publisher client->state = STATE_RUNNING; } } } else if (client->state == STATE_RUNNING && client->type == CLIENT_SUBSCRIBER) { // Simple WebSocket frame parsing for this specific test case while (client->read_len >= 2) { uint64_t payload_len = client->read_buf[1] & 0x7F; size_t header_len = 2; if (payload_len == 126) { if (client->read_len < 4) break; payload_len = ntohs(*(uint16_t*)(client->read_buf + 2)); header_len = 4; } else if (payload_len == 127) { // Not expected for this test, would require 64-bit length handling close_client(client); break; } if (client->read_len >= header_len + payload_len) { char* payload = client->read_buf + header_len; double sent_time = atof(payload); if (sent_time > 0) { double latency = get_time_double() - sent_time; if (latencies_count < MAX_LATENCIES) { latencies[latencies_count++] = latency; } messages_received++; } size_t frame_size = header_len + payload_len; memmove(client->read_buf, client->read_buf + frame_size, client->read_len - frame_size); client->read_len -= frame_size; } else { break; // Incomplete frame } } } } // --- Statistics --- int compare_doubles(const void* a, const void* b) { double da = *(const double*)a; double db = *(const double*)b; if (da < db) return -1; if (da > db) return 1; return 0; } void print_report() { printf("\n" "================================================================================\n"); printf("%s\n", " PERFORMANCE REPORT "); printf("================================================================================\n"); if (latencies_count == 0) { printf("No messages were received. Cannot generate a report. Is the server running?\n"); return; } uint64_t message_loss = (messages_sent > messages_received) ? (messages_sent - messages_received) : 0; double loss_rate = (messages_sent > 0) ? ((double)message_loss / messages_sent * 100.0) : 0; double throughput = (double)messages_received / TEST_DURATION_S; printf("Test Duration: %d seconds\n", TEST_DURATION_S); printf("Total Messages Sent: %lu\n", messages_sent); printf("Total Messages Rcvd: %lu\n", messages_received); printf("Message Loss: %lu (%.2f%%)\n", message_loss, loss_rate); printf("Actual Throughput: %.2f msg/sec\n", throughput); printf("--------------------------------------------------------------------------------\n"); qsort(latencies, latencies_count, sizeof(double), compare_doubles); double sum = 0; for (size_t i = 0; i < latencies_count; ++i) sum += latencies[i]; printf("Latency Statistics (ms):\n"); printf(" Average: %.4f ms\n", (sum / latencies_count) * 1000.0); printf(" Min: %.4f ms\n", latencies[0] * 1000.0); printf(" Max: %.4f ms\n", latencies[latencies_count - 1] * 1000.0); printf(" Median (p50): %.4f ms\n", latencies[(size_t)(latencies_count * 0.50)] * 1000.0); printf(" 95th Percentile: %.4f ms\n", latencies[(size_t)(latencies_count * 0.95)] * 1000.0); printf(" 99th Percentile: %.4f ms\n", latencies[(size_t)(latencies_count * 0.99)] * 1000.0); printf("================================================================================\n"); } // --- Main Function --- int main() { srand(time(NULL)); latencies = malloc(sizeof(double) * MAX_LATENCIES); if (!latencies) { perror("malloc latencies"); return 1; } printf("Starting WebSocket Pub/Sub Load Test...\n"); printf("Simulating %d subscribers and %d publishers.\n", NUM_SUBSCRIBERS, NUM_PUBLISHERS); printf("Publishing at ~%d msg/sec for %d seconds.\n", NUM_PUBLISHERS * MESSAGES_PER_SECOND_PER_PUBLISHER, TEST_DURATION_S); printf("--------------------------------------------------------------------------------\n"); epoll_fd = epoll_create1(0); if (epoll_fd == -1) { perror("epoll_create1"); free(latencies); return 1; } // *** FIX: Allocate clients on the heap, not the stack *** Client* clients = malloc(sizeof(Client) * TOTAL_CLIENTS); if (!clients) { perror("malloc clients"); free(latencies); close(epoll_fd); return 1; } struct sockaddr_in server_addr; server_addr.sin_family = AF_INET; server_addr.sin_port = htons(PORT); inet_pton(AF_INET, HOST, &server_addr.sin_addr); for (int i = 0; i < TOTAL_CLIENTS; ++i) { clients[i].fd = socket(AF_INET, SOCK_STREAM, 0); fcntl(clients[i].fd, F_SETFL, O_NONBLOCK); clients[i].type = (i < NUM_SUBSCRIBERS) ? CLIENT_SUBSCRIBER : CLIENT_PUBLISHER; clients[i].state = STATE_CONNECTING; clients[i].read_len = 0; clients[i].write_len = 0; clients[i].write_pos = 0; clients[i].next_send_time = 0; connect(clients[i].fd, (struct sockaddr*)&server_addr, sizeof(server_addr)); struct epoll_event ev; ev.events = EPOLLIN | EPOLLOUT | EPOLLET; ev.data.ptr = &clients[i]; if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, clients[i].fd, &ev) == -1) { perror("epoll_ctl: add"); free(latencies); free(clients); close(epoll_fd); return 1; } } struct epoll_event events[MAX_EVENTS]; double start_time = get_time_double(); double end_time = start_time + TEST_DURATION_S; while (get_time_double() < end_time) { int n = epoll_wait(epoll_fd, events, MAX_EVENTS, 10); // 10ms timeout double now = get_time_double(); for (int i = 0; i < n; ++i) { Client* client = (Client*)events[i].data.ptr; if (events[i].events & (EPOLLERR | EPOLLHUP)) { close_client(client); continue; } if (client->state == STATE_CONNECTING && (events[i].events & EPOLLOUT)) { int result; socklen_t result_len = sizeof(result); getsockopt(client->fd, SOL_SOCKET, SO_ERROR, &result, &result_len); if (result == 0) { send_handshake(client); } else { close_client(client); } } else { if (events[i].events & EPOLLIN) handle_read(client); if (events[i].events & EPOLLOUT) handle_write(client); } } // Publisher logic if (all_subscribed) { for (int i = NUM_SUBSCRIBERS; i < TOTAL_CLIENTS; ++i) { Client* client = &clients[i]; if (client->state == STATE_RUNNING && client->write_len == 0 && now >= client->next_send_time) { const char* channel = CHANNELS[rand() % NUM_CHANNELS]; char message[256]; int msg_len = snprintf(message, sizeof(message), "%.6f:Hello from publisher %d on channel %s", now, i - NUM_SUBSCRIBERS, channel); char pub_msg[384]; int pub_msg_len = snprintf(pub_msg, sizeof(pub_msg), "pub %s %s", channel, message); client->write_len = create_ws_frame(pub_msg, pub_msg_len, client->write_buf); messages_sent++; client->next_send_time = now + (1.0 / MESSAGES_PER_SECOND_PER_PUBLISHER); epoll_ctl_mod(client->fd, EPOLLOUT | EPOLLIN | EPOLLET, client); } } } } printf("\nTest duration finished. Shutting down clients...\n"); for (int i = 0; i < TOTAL_CLIENTS; ++i) { close_client(&clients[i]); } print_report(); free(clients); free(latencies); close(epoll_fd); return 0; }