import json
import os
from datetime import datetime
from typing import Dict, Optional
from rp.core.logging import get_logger
logger = get_logger("usage")
USAGE_DB_FILE = os.path.expanduser("~/.assistant_usage.json")
EXCHANGE_RATE = 1.0
MODEL_COSTS = {
"x-ai/grok-code-fast-1": {"input": 0.0002, "output": 0.0015},
"gpt-4": {"input": 0.03, "output": 0.06},
"gpt-4-turbo": {"input": 0.01, "output": 0.03},
"gpt-3.5-turbo": {"input": 0.0005, "output": 0.0015},
"claude-3-opus": {"input": 0.015, "output": 0.075},
"claude-3-sonnet": {"input": 0.003, "output": 0.015},
"claude-3-haiku": {"input": 0.00025, "output": 0.00125},
}
class UsageTracker:
def __init__(self):
self.session_usage = {
"requests": 0,
"total_tokens": 0,
"input_tokens": 0,
"output_tokens": 0,
"estimated_cost": 0.0,
"models_used": {},
}
def track_request(
self, model: str, input_tokens: int, output_tokens: int, total_tokens: Optional[int] = None
):
if total_tokens is None:
total_tokens = input_tokens + output_tokens
self.session_usage["requests"] += 1
self.session_usage["total_tokens"] += total_tokens
self.session_usage["input_tokens"] += input_tokens
self.session_usage["output_tokens"] += output_tokens
if model not in self.session_usage["models_used"]:
self.session_usage["models_used"][model] = {"requests": 0, "tokens": 0, "cost": 0.0}
model_usage = self.session_usage["models_used"][model]
model_usage["requests"] += 1
model_usage["tokens"] += total_tokens
cost = self._calculate_cost(model, input_tokens, output_tokens)
model_usage["cost"] += cost
self.session_usage["estimated_cost"] += cost
self._save_to_history(model, input_tokens, output_tokens, cost)
logger.debug(f"Tracked request: {model}, tokens: {total_tokens}, cost: €{cost:.4f}")
@staticmethod
def _calculate_cost(model: str, input_tokens: int, output_tokens: int) -> float:
if model not in MODEL_COSTS:
base_model = model.split("/")[0] if "/" in model else model
if base_model not in MODEL_COSTS:
logger.warning(f"Unknown model for cost calculation: {model}")
return 0.0
costs = MODEL_COSTS[base_model]
else:
costs = MODEL_COSTS[model]
input_cost = input_tokens / 1000 * costs["input"] * EXCHANGE_RATE
output_cost = output_tokens / 1000 * costs["output"] * EXCHANGE_RATE
return input_cost + output_cost
def _save_to_history(self, model: str, input_tokens: int, output_tokens: int, cost: float):
try:
history = []
if os.path.exists(USAGE_DB_FILE):
with open(USAGE_DB_FILE) as f:
history = json.load(f)
history.append(
{
"timestamp": datetime.now().isoformat(),
"model": model,
"input_tokens": input_tokens,
"output_tokens": output_tokens,
"total_tokens": input_tokens + output_tokens,
"cost": cost,
}
)
if len(history) > 10000:
history = history[-10000:]
with open(USAGE_DB_FILE, "w") as f:
json.dump(history, f, indent=2)
except Exception as e:
logger.error(f"Error saving usage history: {e}")
def get_session_summary(self) -> Dict:
return self.session_usage.copy()
def get_formatted_summary(self) -> str:
usage = self.session_usage
lines = [
"\n=== Session Usage Summary ===",
f"Total Requests: {usage['requests']}",
f"Total Tokens: {usage['total_tokens']:,}",
f" Input: {usage['input_tokens']:,}",
f" Output: {usage['output_tokens']:,}",
f"Estimated Cost: ${usage['estimated_cost']:.4f}",
]
if usage["models_used"]:
lines.append("\nModels Used:")
for model, stats in usage["models_used"].items():
lines.append(
f" {model}: {stats['requests']} requests, {stats['tokens']:,} tokens, ${stats['cost']:.4f}"
)
return "\n".join(lines)
@staticmethod
def get_total_usage() -> Dict:
if not os.path.exists(USAGE_DB_FILE):
return {"total_requests": 0, "total_tokens": 0, "total_cost": 0.0}
try:
with open(USAGE_DB_FILE) as f:
history = json.load(f)
total_tokens = sum((entry["total_tokens"] for entry in history))
total_cost = sum((entry["cost"] for entry in history))
return {
"total_requests": len(history),
"total_tokens": total_tokens,
"total_cost": total_cost,
}
except Exception as e:
logger.error(f"Error loading usage history: {e}")
return {"total_requests": 0, "total_tokens": 0, "total_cost": 0.0}