This commit is contained in:
parent
81511072c6
commit
d111fb1dfb
2
.gitignore
vendored
2
.gitignore
vendored
@ -2,4 +2,4 @@
|
||||
.venv
|
||||
.history
|
||||
__pycache__
|
||||
|
||||
env.py
|
||||
|
@ -16,6 +16,7 @@ python_requires = >=3.7
|
||||
install_requires =
|
||||
aiohttp
|
||||
dataset
|
||||
openai
|
||||
yura @ git+https://retoor.molodetz.nl/retoor/yura.git@main
|
||||
|
||||
[options.packages.find]
|
||||
|
@ -9,4 +9,5 @@ Requires-Python: >=3.7
|
||||
Description-Content-Type: text/markdown
|
||||
Requires-Dist: aiohttp
|
||||
Requires-Dist: dataset
|
||||
Requires-Dist: openai
|
||||
Requires-Dist: yura@ git+https://retoor.molodetz.nl/retoor/yura.git@main
|
||||
|
@ -2,6 +2,7 @@ pyproject.toml
|
||||
setup.cfg
|
||||
src/rbabel/__init__.py
|
||||
src/rbabel/__main__.py
|
||||
src/rbabel/agent.py
|
||||
src/rbabel/app.py
|
||||
src/rbabel/args.py
|
||||
src/rbabel/cli.py
|
||||
|
@ -1,3 +1,4 @@
|
||||
aiohttp
|
||||
dataset
|
||||
openai
|
||||
yura@ git+https://retoor.molodetz.nl/retoor/yura.git@main
|
||||
|
@ -1,7 +1,7 @@
|
||||
import logging
|
||||
|
||||
logging.basicConfig(
|
||||
level=logging.DEBUG,
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(levelname)s - %(message)s',
|
||||
datefmt='%Y-%m-%d %H:%M:%S'
|
||||
)
|
||||
|
210
src/rbabel/agent.py
Normal file
210
src/rbabel/agent.py
Normal file
@ -0,0 +1,210 @@
|
||||
"""
|
||||
Written in 2024 by retoor@molodetz.nl.
|
||||
|
||||
MIT license. Enjoy!
|
||||
|
||||
You'll need a paid OpenAI account, named a project in it, requested an api key and created an assistant.
|
||||
URL's to all these pages are described in the class for convenience.
|
||||
|
||||
The API keys described in this document are fake but are in the correct format for educational purposes.
|
||||
|
||||
How to start:
|
||||
- sudo apt install python3.12-venv python3-pip -y
|
||||
- python3 -m venv .venv
|
||||
- . .venv/bin/activate
|
||||
- pip install openapi
|
||||
|
||||
This file is to be used as part of your project or a standalone after doing
|
||||
some modifications at the end of the file.
|
||||
"""
|
||||
|
||||
try:
|
||||
import sys
|
||||
import os
|
||||
sys.path.append(os.getcwd())
|
||||
import env
|
||||
API_KEY = env.API_KEY
|
||||
ASSISTANT_ID = env.ASSISTANT_ID
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
import asyncio
|
||||
import functools
|
||||
from collections.abc import Generator
|
||||
from typing import Optional
|
||||
|
||||
from openai import OpenAI
|
||||
|
||||
|
||||
class Agent:
|
||||
"""
|
||||
This class translates into an instance a single user session with its own memory.
|
||||
|
||||
The messages property of this class is a list containing the full chat history about
|
||||
what the user said and what the assistant (agent) said. This can be used in future to continue
|
||||
where you left off. Format is described in the docs of __init__ function below.
|
||||
|
||||
Introduction API usage for if you want to extend this class:
|
||||
https://platform.openai.com/docs/api-reference/introduction
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, api_key: str, assistant_id: int, messages: Optional[list] = None
|
||||
):
|
||||
"""
|
||||
You can find and create API keys here:
|
||||
https://platform.openai.com/api-keys
|
||||
|
||||
You can find assistant_id (agent_id) here. It is the id that starts with 'asst_', not your custom name:
|
||||
https://platform.openai.com/assistants/
|
||||
|
||||
Messages are optional in this format, this is to keep a message history that you can later use again:
|
||||
[
|
||||
{"role": "user", "message": "What is choking the chicken?"},
|
||||
{"role": "assistant", "message": "Lucky for the cock."}
|
||||
]
|
||||
"""
|
||||
|
||||
self.assistant_id = assistant_id
|
||||
self.api_key = api_key
|
||||
self.client = OpenAI(api_key=self.api_key)
|
||||
self.messages = messages or []
|
||||
self.thread = self.client.beta.threads.create(messages=self.messages)
|
||||
|
||||
async def dalle2(
|
||||
self, prompt: str, width: Optional[int] = 512, height: Optional[int] = 512
|
||||
) -> dict:
|
||||
"""
|
||||
In my opinion dall-e-2 produces unusual results.
|
||||
Sizes: 256x256, 512x512 or 1024x1024.
|
||||
"""
|
||||
result = self.client.images.generate(
|
||||
model="dall-e-2", prompt=prompt, n=1, size=f"{width}x{height}"
|
||||
)
|
||||
return result
|
||||
|
||||
@property
|
||||
async def models(self):
|
||||
"""
|
||||
List models in dict format. That's more convenient than the original
|
||||
list method because this can be directly converted to json to be used
|
||||
in your front end or api. That's not the original result which is a
|
||||
custom list with unserializable models.
|
||||
"""
|
||||
return [
|
||||
{
|
||||
"id": model.id,
|
||||
"owned_by": model.owned_by,
|
||||
"object": model.object,
|
||||
"created": model.created,
|
||||
}
|
||||
for model in self.client.models.list()
|
||||
]
|
||||
|
||||
async def dalle3(
|
||||
self, prompt: str, height: Optional[int] = 1024, width: Optional[int] = 1024
|
||||
) -> dict:
|
||||
"""
|
||||
Sadly only big sizes allowed. Is more pricy.
|
||||
Sizes: 1024x1024, 1792x1024, or 1024x1792.
|
||||
"""
|
||||
result = self.client.images.generate(
|
||||
model="dall-e-3", prompt=prompt, n=1, size=f"{width}x{height}"
|
||||
)
|
||||
print(result)
|
||||
return result
|
||||
|
||||
async def chat(
|
||||
self, message: str, interval: Optional[float] = 0.2
|
||||
) -> Generator[None, None, str]:
|
||||
"""
|
||||
Chat with the agent. It yields on given interval to inform the caller it' still busy so you can
|
||||
update the user with live status. It doesn't hang. You can use this fully async with other
|
||||
instances of this class.
|
||||
|
||||
This function also updates the self.messages list with chat history for later use.
|
||||
"""
|
||||
message_object = {"role": "user", "content": message}
|
||||
self.messages.append(message_object)
|
||||
self.client.beta.threads.messages.create(
|
||||
self.thread.id,
|
||||
role=message_object["role"],
|
||||
content=message_object["content"],
|
||||
)
|
||||
run = self.client.beta.threads.runs.create(
|
||||
thread_id=self.thread.id, assistant_id=self.assistant_id
|
||||
)
|
||||
|
||||
while run.status != "completed":
|
||||
run = self.client.beta.threads.runs.retrieve(
|
||||
thread_id=self.thread.id, run_id=run.id
|
||||
)
|
||||
yield None
|
||||
await asyncio.sleep(interval)
|
||||
|
||||
response_messages = self.client.beta.threads.messages.list(
|
||||
thread_id=self.thread.id
|
||||
).data
|
||||
last_message = response_messages[0]
|
||||
self.messages.append({"role": "assistant", "content": last_message})
|
||||
yield str(last_message)
|
||||
|
||||
async def chatp(self, message: str) -> str:
|
||||
"""
|
||||
Just like regular chat function but with progress indication and returns string directly.
|
||||
This is handy for interactive usage or for a process log.
|
||||
"""
|
||||
asyncio.get_event_loop()
|
||||
print("Processing", end="")
|
||||
async for message in self.chat(message):
|
||||
if not message:
|
||||
print(".", end="", flush=True)
|
||||
continue
|
||||
print("")
|
||||
break
|
||||
return message
|
||||
|
||||
async def read_line(self, ps: Optional[str] = "> "):
|
||||
"""
|
||||
Non blocking read_line.
|
||||
Blocking read line can break web socket connections.
|
||||
That's why.
|
||||
"""
|
||||
loop = asyncio.get_event_loop()
|
||||
patched_input = functools.partial(input, ps)
|
||||
return await loop.run_in_executor(None, patched_input)
|
||||
|
||||
async def cli(self):
|
||||
"""
|
||||
Interactive client. Can be used on terminal by user or a different process.
|
||||
The bottom new line is so that a process can check for \n\n to check if it's end response
|
||||
and there's nothing left to wait for and thus can send next prompt if the '>' shows.
|
||||
"""
|
||||
while True:
|
||||
try:
|
||||
message = await self.read_line("> ")
|
||||
if not message.strip():
|
||||
continue
|
||||
response = await self.chatp(message)
|
||||
print(response.content[0].text.value)
|
||||
print("")
|
||||
except KeyboardInterrupt:
|
||||
print("Exiting..")
|
||||
break
|
||||
|
||||
async def main():
|
||||
"""
|
||||
Example main function. The keys here are not real but look exactly like
|
||||
the real ones for example purposes and that you're sure your key is in the
|
||||
right format.
|
||||
"""
|
||||
agent = Agent(api_key=API_KEY, assistant_id=ASSISTANT_ID)
|
||||
|
||||
# Run interactive chat
|
||||
await agent.cli()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Only gets executed by direct execution of script. Not when important.
|
||||
asyncio.run(main())
|
@ -1,7 +1,12 @@
|
||||
from aiohttp import web
|
||||
from yura.client import AsyncClient as LLMClient
|
||||
|
||||
from rbabel.agent import Agent
|
||||
from rbabel import log
|
||||
import sys
|
||||
import os
|
||||
sys.path.append(os.getcwd())
|
||||
|
||||
import env
|
||||
|
||||
LLM_NAME = "rbabel"
|
||||
LLM_CONTEXT = "You are an English grammar corrector. You repsond with only the corrected English of by user given prompt and nothing more. Also replace numbers with the word variant."
|
||||
@ -11,30 +16,16 @@ class Application(web.Application):
|
||||
|
||||
|
||||
def __init__(self, llm_url=None, llm_name=LLM_NAME, llm_model=LLM_MODEL,llm_context=LLM_CONTEXT, *args, **kwargs):
|
||||
self.llm_url = llm_url
|
||||
self.llm_name = llm_name
|
||||
self.llm_model = LLM_MODEL
|
||||
self.llm_context = llm_context
|
||||
self.agent = Agent(env.API_KEY, env.ASSISTANT_ID)
|
||||
super().__init__(*args, **kwargs)
|
||||
self.on_startup.append(self.create_llm)
|
||||
self.router.add_post("/", self.optimize_grammar_handler)
|
||||
|
||||
async def create_llm(self, app):
|
||||
llm_client = LLMClient(self.llm_url)
|
||||
log.info("Creating LLM named {}.".format(self.llm_name))
|
||||
success = await llm_client.create(self.llm_name, self.llm_model, self.llm_context)
|
||||
assert(success)
|
||||
log.info("LLM {} created.".format(self.llm_name))
|
||||
await llm_client.close()
|
||||
|
||||
async def fix_grammar(self, content):
|
||||
corrected_content = []
|
||||
llm_client = LLMClient(self.llm_url)
|
||||
token = await llm_client.connect(self.llm_name)
|
||||
async for chunk in llm_client.chat(token, content):
|
||||
corrected_content.append(chunk['content'])
|
||||
await llm_client.close()
|
||||
return "".join(corrected_content)
|
||||
async for message in self.agent.chat(content):
|
||||
if message:
|
||||
print("<<<<",message,"<<<<")
|
||||
return message
|
||||
|
||||
async def optimize_grammar_handler(self,request):
|
||||
text = await request.json()
|
||||
|
Loading…
Reference in New Issue
Block a user