Update train_model_to_recognize_patterns.md
This commit is contained in:
parent
9151e3d2ef
commit
9169b73196
@ -57,5 +57,36 @@ model.fit(np.array(X_train), np.array(y_train), epochs=10, batch_size=32)
|
||||
|
||||
print("Model trained!")
|
||||
```
|
||||
## Using the recognition model
|
||||
```python
|
||||
import cv2
|
||||
from tensorflow.keras.models import load_model
|
||||
|
||||
# Load trained model from disk
|
||||
model_path = 'path/to/trained/model.h5'
|
||||
model = load_model(model_path)
|
||||
|
||||
# Capture video from webcam or load pre-existing image
|
||||
cap = cv2.VideoCapture(0)
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
|
||||
# Convert frame to grayscale and resize to 224x224 pixels
|
||||
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||||
resized_frame = cv2.resize(gray_frame, (224, 224))
|
||||
|
||||
# Add batch dimension for prediction
|
||||
input_data = np.array([resized_frame])
|
||||
|
||||
# Get output probabilities for each facial expression
|
||||
output_probabilities = model.predict(input_data)
|
||||
|
||||
# Print the top 3 predicted expressions with their probabilities
|
||||
print(np.argsort(-output_probabilities[0])[:3], output_probabilities[0][:3])
|
||||
|
||||
# Release^[[A^[[A^[[A^[[A^[[A^[[A^[[A^[[A resources^[[A^[[A^[[A^[[A^[[A^[[A^[[A^[[A^[[A and^[[A^[[A^[[A exit
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
```
|
||||
|
Loading…
Reference in New Issue
Block a user