Update train_model_to_recognize_patterns.md
This commit is contained in:
parent
9151e3d2ef
commit
9169b73196
@ -57,5 +57,36 @@ model.fit(np.array(X_train), np.array(y_train), epochs=10, batch_size=32)
|
|||||||
|
|
||||||
print("Model trained!")
|
print("Model trained!")
|
||||||
```
|
```
|
||||||
|
## Using the recognition model
|
||||||
|
```python
|
||||||
|
import cv2
|
||||||
|
from tensorflow.keras.models import load_model
|
||||||
|
|
||||||
|
# Load trained model from disk
|
||||||
|
model_path = 'path/to/trained/model.h5'
|
||||||
|
model = load_model(model_path)
|
||||||
|
|
||||||
|
# Capture video from webcam or load pre-existing image
|
||||||
|
cap = cv2.VideoCapture(0)
|
||||||
|
while True:
|
||||||
|
ret, frame = cap.read()
|
||||||
|
if not ret:
|
||||||
|
break
|
||||||
|
|
||||||
|
# Convert frame to grayscale and resize to 224x224 pixels
|
||||||
|
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||||||
|
resized_frame = cv2.resize(gray_frame, (224, 224))
|
||||||
|
|
||||||
|
# Add batch dimension for prediction
|
||||||
|
input_data = np.array([resized_frame])
|
||||||
|
|
||||||
|
# Get output probabilities for each facial expression
|
||||||
|
output_probabilities = model.predict(input_data)
|
||||||
|
|
||||||
|
# Print the top 3 predicted expressions with their probabilities
|
||||||
|
print(np.argsort(-output_probabilities[0])[:3], output_probabilities[0][:3])
|
||||||
|
|
||||||
|
# Release^[[A^[[A^[[A^[[A^[[A^[[A^[[A^[[A resources^[[A^[[A^[[A^[[A^[[A^[[A^[[A^[[A^[[A and^[[A^[[A^[[A exit
|
||||||
|
cap.release()
|
||||||
|
cv2.destroyAllWindows()
|
||||||
|
```
|
||||||
|
Loading…
Reference in New Issue
Block a user