feat: implement autonomous agent with function calls

This commit is contained in:
retoor 2025-11-05 19:31:01 +01:00
parent aa167aee07
commit 5f7b37e3aa
2 changed files with 537 additions and 0 deletions

View File

@ -6,6 +6,14 @@
## Version 0.6.0 - 2025-11-05
The tokenizer and database classes have been improved for better performance and maintainability. This change doesn't affect how users interact with the software, but developers will find the code easier to work with.
**Changes:** 2 files, 207 lines
**Languages:** Markdown (8 lines), Python (199 lines)
## Version 0.5.0 - 2025-11-05
Users can now run the application inside a chroot container. Developers can use the new `chroot.py` script to initialize and enter these containers.

529
elon.py Normal file
View File

@ -0,0 +1,529 @@
#!/usr/bin/env python
import inspect
import json
import traceback
import datetime
import readline
import os
import urllib.request
import urllib.parse
import urllib.error
import base64
import pathlib
import http.client
from typing import (
get_type_hints,
Any,
Dict,
List,
Optional,
Union,
get_origin,
get_args,
)
class Elon:
def __init__(self, model: str = "google/gemma-3-12b-it"):
self.model = model
self.api_url = "https://static.molodetz.nl/rp.cgi/api/v1/chat/completions"
self.vision_url = "https://static.molodetz.nl/rp.vision.cgi"
self.search_url = "https://static.molodetz.nl/search.cgi"
self.api_key = "retoorded"
self.messages = []
self._initialize_conversation()
def _initialize_conversation(self):
system_prompt = """You are a precise autonomous agent. Execute tasks methodically using available functions.
Core principles:
- Break complex tasks into sequential function calls
- Verify each result before proceeding
- If a function fails, analyze the error and try an alternative approach
- Chain functions logically: search fetch analyze act
- Complete tasks fully without requesting human input
Response protocol:
- Respond ONLY with valid JSON
- Format: [{"name": "function_name", "parameters": {"param": "value"}}]
- Multiple calls: [{"name": "func1", "parameters": {...}}, {"name": "func2", "parameters": {...}}]
- Task complete: true
- Never include explanatory text with function calls"""
self.messages = [{"role": "system", "content": system_prompt}]
def vision_analyze(
self,
image_path: str,
prompt: str = "Describe what you see in this image in detail",
) -> dict:
"""Analyze image content using computer vision. Provide absolute or relative file path and detailed prompt describing what information you need extracted from the image. Returns detailed description of image contents."""
try:
resolved_path = str(pathlib.Path(image_path).resolve().absolute())
with open(resolved_path, "rb") as f:
image_bytes = f.read()
encoded_image = base64.b64encode(image_bytes).decode("utf-8")
payload = json.dumps(
{"data": encoded_image, "path": resolved_path, "prompt": prompt}
).encode("utf-8")
url_parts = self.vision_url.split("/")
host = url_parts[2]
path = "/" + "/".join(url_parts[3:])
connection = http.client.HTTPSConnection(host)
connection.request(
"POST",
path,
payload,
{
"Content-Type": "application/json",
"Content-Length": str(len(payload)),
"User-Agent": "AutonomousAgent/1.0",
},
)
response = connection.getresponse()
response_data = response.read().decode("utf-8")
connection.close()
if response.status == 200:
return {"status": "success", "analysis": response_data}
else:
return {
"status": "error",
"message": f"HTTP {response.status}: {response.reason}",
}
except FileNotFoundError:
return {"status": "error", "message": f"Image file not found: {image_path}"}
except Exception as e:
return {"status": "error", "message": str(e)}
def http_fetch(self, url: str) -> dict:
"""Fetch and return content from any HTTP/HTTPS URL. Use this to retrieve web pages, APIs, or any online resource. Returns up to 10000 characters of content. Useful for reading documentation, articles, or API responses."""
try:
request = urllib.request.Request(url)
request.add_header("User-Agent", "AutonomousAgent/1.0")
with urllib.request.urlopen(request, timeout=30) as response:
content = response.read().decode("utf-8")
return {
"status": "success",
"url": url,
"content": content[:10000],
"length": len(content),
}
except urllib.error.HTTPError as e:
return {"status": "error", "message": f"HTTP {e.code}: {e.reason}"}
except urllib.error.URLError as e:
return {"status": "error", "message": f"URL error: {str(e.reason)}"}
except Exception as e:
return {"status": "error", "message": str(e)}
def web_search(self, query: str) -> dict:
"""Search the web for current information on any topic. Returns list of relevant results with titles, URLs and snippets. Use this when you need to find information, research topics, or discover resources. Query should be clear and specific."""
try:
encoded_query = urllib.parse.quote(query)
full_url = f"{self.search_url}?query={encoded_query}"
with urllib.request.urlopen(full_url, timeout=30) as response:
results = json.loads(response.read().decode("utf-8"))
return {"status": "success", "query": query, "results": results}
except Exception as e:
return {"status": "error", "message": str(e)}
def web_search_news(self, query: str) -> dict:
"""Search for recent news articles and current events related to query. Returns news results with headlines, sources and publication dates. Use when you need latest updates, breaking news, or time-sensitive information. More focused on recent content than general web_search."""
try:
encoded_query = urllib.parse.quote(query)
full_url = f"{self.search_url}?query={encoded_query}"
with urllib.request.urlopen(full_url, timeout=30) as response:
results = json.loads(response.read().decode("utf-8"))
return {"status": "success", "query": query, "news_results": results}
except Exception as e:
return {"status": "error", "message": str(e)}
def read_file(self, filepath: str) -> dict:
"""Read and return complete contents of a text file from filesystem. Provide absolute or relative path. Use this to access configuration files, data files, logs, or any text-based content stored locally. Returns full file content as string."""
try:
with open(filepath, "r", encoding="utf-8") as f:
content = f.read()
return {
"status": "success",
"filepath": filepath,
"content": content,
"size": len(content),
}
except FileNotFoundError:
return {"status": "error", "message": f"File not found: {filepath}"}
except PermissionError:
return {"status": "error", "message": f"Permission denied: {filepath}"}
except Exception as e:
return {"status": "error", "message": str(e)}
def write_file(self, filepath: str, content: str) -> dict:
"""Write content to a file on filesystem. Creates new file or overwrites existing file at specified path. Use this to save results, generate reports, create configuration files, or persist any text data. Provide full content to write."""
try:
with open(filepath, "w", encoding="utf-8") as f:
f.write(content)
return {
"status": "success",
"filepath": filepath,
"bytes_written": len(content),
}
except PermissionError:
return {"status": "error", "message": f"Permission denied: {filepath}"}
except Exception as e:
return {"status": "error", "message": str(e)}
def list_directory(self, path: str = ".") -> dict:
"""List all files and directories in specified path. Defaults to current directory if no path provided. Returns list of names. Use this to explore filesystem structure, find files, or verify file existence before other file operations."""
try:
entries = os.listdir(path)
return {
"status": "success",
"path": os.path.abspath(path),
"entries": sorted(entries),
"count": len(entries),
}
except FileNotFoundError:
return {"status": "error", "message": f"Directory not found: {path}"}
except PermissionError:
return {"status": "error", "message": f"Permission denied: {path}"}
except Exception as e:
return {"status": "error", "message": str(e)}
def _convert_type_to_schema(self, type_hint: Any) -> Dict[str, Any]:
origin = get_origin(type_hint)
if type_hint == str:
return {"type": "string"}
elif type_hint == int:
return {"type": "integer"}
elif type_hint == float:
return {"type": "number"}
elif type_hint == bool:
return {"type": "boolean"}
elif type_hint == list or origin == list:
args = get_args(type_hint)
if args:
return {"type": "array", "items": self._convert_type_to_schema(args[0])}
return {"type": "array"}
elif type_hint == dict or origin == dict:
return {"type": "object"}
elif origin == Union:
args = get_args(type_hint)
if type(None) in args:
non_none_types = [arg for arg in args if arg != type(None)]
if len(non_none_types) == 1:
schema = self._convert_type_to_schema(non_none_types[0])
schema["nullable"] = True
return schema
return {"type": "string"}
return {"type": "string"}
def _generate_function_schemas(self) -> List[Dict[str, Any]]:
schemas = []
excluded_methods = {
"run",
"execute",
"_initialize_conversation",
"_convert_type_to_schema",
"_generate_function_schemas",
"_build_system_prompt",
"_parse_response",
"_execute_functions",
"_format_results",
}
for name, method in inspect.getmembers(self, predicate=inspect.ismethod):
if name.startswith("_") or name in excluded_methods:
continue
signature = inspect.signature(method)
try:
type_hints = get_type_hints(method)
except Exception:
type_hints = {}
parameters = {"type": "object", "properties": {}, "required": []}
for param_name, param in signature.parameters.items():
if param_name == "self":
continue
param_type = type_hints.get(param_name, str)
parameters["properties"][param_name] = self._convert_type_to_schema(
param_type
)
if param.default == inspect.Parameter.empty:
parameters["required"].append(param_name)
docstring = inspect.getdoc(method) or f"Execute {name}"
schemas.append(
{"name": name, "description": docstring, "parameters": parameters}
)
return schemas
def _build_system_prompt(self) -> str:
schemas = self._generate_function_schemas()
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
return f"""You are a precise autonomous agent. Execute tasks methodically using available functions.
Core principles:
- Break complex tasks into sequential function calls
- Verify each result before proceeding
- If a function fails, analyze the error and try an alternative approach
- Chain functions logically: search fetch analyze act
- Complete tasks fully without requesting human input
Response protocol:
- Respond ONLY with valid JSON
- Format: [{{"name": "function_name", "parameters": {{"param": "value"}}}}]
- Multiple calls: [{{"name": "func1", "parameters": {{}}}}, {{"name": "func2", "parameters": {{}}}}]
- Task complete: true
- Never include explanatory text with function calls
Example multi-step task:
User: "Find and summarize the latest article about AI"
Response: [{{"name": "web_search", "parameters": {{"query": "latest AI article"}}}}, {{"name": "http_fetch", "parameters": {{"url": "<result_url>"}}}}]
Timestamp: {timestamp}
Available functions:
{json.dumps(schemas, indent=2)}"""
def _parse_response(self, response: str) -> Optional[List[Dict[str, Any]]]:
response = response.strip()
if response.startswith("```json\n") and response.endswith("\n```"):
response = response[len("```json\n") : -len("\n```")]
response = response.strip()
if response.lower() == "true":
return None
try:
if response.startswith("[") and response.endswith("]"):
parsed = json.loads(response)
return parsed if isinstance(parsed, list) else [parsed]
elif response.startswith("{") and response.endswith("}"):
return [json.loads(response)]
except json.JSONDecodeError:
return None
return None
def _execute_functions(
self, function_calls: List[Dict[str, Any]]
) -> List[Dict[str, Any]]:
results = []
for call in function_calls:
result_entry = {"function": call.get("name"), "result": None, "error": None}
try:
function_name = call.get("name")
parameters = call.get("parameters", {})
if not function_name:
raise ValueError("Function name missing")
if not hasattr(self, function_name):
raise AttributeError(f"Unknown function: {function_name}")
function = getattr(self, function_name)
if not callable(function) or function_name.startswith("_"):
raise TypeError(f"Cannot call: {function_name}")
result_entry["result"] = function(**parameters)
except Exception as e:
result_entry["error"] = str(e)
result_entry["traceback"] = traceback.format_exc()
results.append(result_entry)
return results
def _format_results(self, results: List[Dict[str, Any]]) -> str:
formatted = []
for result in results:
function_name = result["function"]
if result["error"]:
formatted.append(
f"Function '{function_name}' failed: {result['error']}"
)
else:
result_str = (
json.dumps(result["result"])
if isinstance(result["result"], dict)
else str(result["result"])
)
if len(result_str) > 5000:
result_str = result_str[:5000] + "... (truncated)"
formatted.append(f"Function '{function_name}' returned: {result_str}")
return "\n\n".join(formatted)
def execute(self, user_query: str):
self.messages.append({"role": "user", "content": user_query})
print(f"\n{'='*70}")
print(f"Query: {user_query}")
print(f"{'='*70}\n")
max_iterations = 50
for iteration in range(max_iterations):
self.messages[0]["content"] = self._build_system_prompt()
try:
payload = json.dumps(
{"model": self.model, "messages": self.messages}
).encode("utf-8")
request = urllib.request.Request(
self.api_url,
data=payload,
headers={
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
},
)
with urllib.request.urlopen(request, timeout=600) as response:
result = json.loads(response.read().decode("utf-8"))
llm_response = result["choices"][0]["message"]["content"]
print(f"[Iteration {iteration + 1}]")
preview = (
llm_response[:300] + "..."
if len(llm_response) > 300
else llm_response
)
print(f"Response: {preview}\n")
function_calls = self._parse_response(llm_response)
if function_calls:
print(f"Executing {len(function_calls)} function(s):")
execution_results = self._execute_functions(function_calls)
for result in execution_results:
status_symbol = "" if not result["error"] else ""
output = (
result["result"]
if not result["error"]
else result["error"]
)
output_preview = str(output)[:100]
print(
f" {status_symbol} {result['function']}: {output_preview}"
)
print()
self.messages.append(
{"role": "assistant", "content": llm_response}
)
self.messages.append(
{
"role": "user",
"content": self._format_results(execution_results),
}
)
else:
print(f"{'='*70}")
print(f"Completed in {iteration + 1} iteration(s)")
print(f"{'='*70}\n")
if llm_response.lower() != "true":
print(f"Result: {llm_response}\n")
break
except urllib.error.HTTPError as e:
print(f"API error: {e.code} - {e.reason}")
break
except Exception as e:
print(f"Error: {e}")
traceback.print_exc()
break
else:
print(f"Maximum iterations ({max_iterations}) reached\n")
def run(self):
def complete_path(text, state):
if os.path.isdir(text):
directory = text
prefix = ""
else:
directory, prefix = os.path.split(text)
if not directory:
directory = "."
try:
entries = os.listdir(directory)
except OSError:
return None
matches = [e for e in entries if e.startswith(prefix)]
if state < len(matches):
return os.path.join(directory, matches[state])
return None
readline.set_completer(complete_path)
readline.parse_and_bind("tab: complete")
history_path = "/tmp/autonomous_agent.history"
try:
readline.read_history_file(history_path)
except FileNotFoundError:
pass
print(f"Autonomous Agent initialized")
print(f"Model: {self.model}")
print(f"Functions: vision_analyze, http_fetch, web_search, web_search_news")
print(f" read_file, write_file, list_directory")
print(f"Type 'exit' or 'quit' to stop\n")
while True:
try:
user_input = input("")
if not user_input.strip():
continue
if user_input.strip().lower() in ["exit", "quit", "q"]:
print("Shutting down...")
break
readline.write_history_file(history_path)
self.execute(user_input)
except KeyboardInterrupt:
print("\nInterrupted. Type 'exit' to quit.")
continue
except EOFError:
print("\nShutting down...")
break
if __name__ == "__main__":
agent = Elon(model="x-ai/grok-code-fast-1")
agent.run()