Add train_model_to_recognize_patterns.md
This commit is contained in:
parent
0084d6b6db
commit
0ff32f4a8f
62
train_model_to_recognize_patterns.md
Normal file
62
train_model_to_recognize_patterns.md
Normal file
@ -0,0 +1,62 @@
|
||||
# Model recognition
|
||||
|
||||
## Training source code:
|
||||
```
|
||||
python
|
||||
import cv2
|
||||
import numpy as np
|
||||
from tensorflow.keras.models import Sequential
|
||||
from tensorflow.keras.layers import Dense, Dropout
|
||||
|
||||
# Load dataset of images with desired output (facial expressions)
|
||||
data_dir = 'path/to/dataset'
|
||||
image_paths = [f for f in os.listdir(data_dir) if f.endswith('.jpg')]
|
||||
|
||||
# Create a list to hold our image data and labels
|
||||
X_train = []
|
||||
y_train = []
|
||||
|
||||
for i, img_path in enumerate(image_paths):
|
||||
# Load image from disk using OpenCV
|
||||
img = cv2.imread(os.path.join(data_dir, img_path))
|
||||
|
||||
# Resize image to 224x224 pixels (standard for VGG16)
|
||||
img = cv2.resize(img, (224, 224))
|
||||
|
||||
# Convert image to grayscale and normalize pixel values
|
||||
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
img_norm = img_gray / 255.0
|
||||
|
||||
# Add image data to list
|
||||
X_train.append(np.array(img_norm))
|
||||
|
||||
# Assign label for current facial expression (e.g., happy, sad, angry)
|
||||
if i % 3 == 0: # Label for 'happy' expression
|
||||
y_train.append(1)
|
||||
elif i % 3 == 1: # Label for 'sad' expression
|
||||
y_train.append(2)
|
||||
else: # Label for 'angry' expression
|
||||
y_train.append(3)
|
||||
else: # Label for 'angry' expression
|
||||
y_train.append(3)
|
||||
|
||||
# Create a TensorFlow model using the VGG16 architecture as base
|
||||
model = Sequential()
|
||||
model.add(Dense(64, activation='relu', input_shape=(224*224,)))
|
||||
model.add(Dropout(0.2))
|
||||
model.add(Dense(32, activation='relu'))
|
||||
model.add(Dropout(0.2))
|
||||
model.add(Dense(3)) # Output layer for 3 facial expressions
|
||||
|
||||
# Compile the model with suitable loss function and optimizer
|
||||
model.compile(loss='sparse_categorical_crossentropy',
|
||||
optimizer='adam',
|
||||
metrics=['accuracy'])
|
||||
|
||||
# Train the model using our dataset
|
||||
model.fit(np.array(X_train), np.array(y_train), epochs=10, batch_size=32)
|
||||
|
||||
print("Model trained!")
|
||||
```
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user